首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A methane oxidation reaction by FeO+ cation was theoretically investigated based on the density functional theory (DFT) and the complete active-space self-consistent field (CASSCF) method as well as the coupled-cluster singles, doubles, and perturbative triples (CCSD(T)) to explore the active-space dependency to computational analyses in such strongly correlated reaction systems. A small active-space CASSCF(5e in 5o) calculation, which only includes five 3d orbitals of the Fe atom in the active-space, showed remarkable difference both in energy and geometry compared to those computed by the DFT and CCSD(T) methods. Interestingly, a large active-space CASSCF(17e in 17o) calculation, which includes almost all the valence orbitals gives a qualitative agreement with either the DFT or the CCSD(T) results in the first half part of the reaction, although it varies from them in the latter half part. Therefore, it is indicated that the active-space dependency is serious in some part of the reaction and the small active-space CASSCF might lead a wrong discussion. We further investigated the optimized geometry of the intermediate complex with the small and the large active-space CASSCF methods as well as the CCSD(T) method, and found that the CASSCF(5e in 5o)-optimized geometry is considerably different from the others. In consequence, a small active-space CASSCF/CASPT2 calculation does not really work for such a strongly correlated reaction system even qualitatively, and a sophisticated assessment using the large active-space CASSCF/CASPT2 method will be indispensable. © 2018 Wiley Periodicals, Inc.  相似文献   

2.
Spectroscopic properties of the low-lying electronic states of Ga2As2 and its ions are studied using the complete active-space self-consistent field (CASSCF) and density function theory (DFT) followed by the coupled-cluster single and double substitutions (including triple excitations) (CCSD(T)) calculations. The stability of low-lying electronic states is examined by computing vibrational frequency. The energies of the ground states and a number of excited electronic states have been computed to predict the spectra of Ga2As2 and its ions. The ionization energy, electronic affinity, and atomization energy are estimated at the CCSD(T)/6-311+G(d) level and compared with the available experimental results.  相似文献   

3.
The popular method of calculating the noncovalent interaction energies at the coupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] theory level in the complete basis set (CBS) limit was to add a CCSD(T) correction term to the CBS second-order Møller-Plesset perturbation theory (MP2). The CCSD(T) correction term is the difference between the CCSD(T) and MP2 interaction energies evaluated in a medium basis set. However, the CCSD(T) calculations with the medium basis sets are still very expensive for systems with more than 30 atoms. Comparatively, the domain-based local pair natural orbital coupled-cluster method [DLPNO-CCSD(T)] can be applied to large systems with over 1,000 atoms. Considering both the computational accuracy and efficiency, in this work, we propose a new scheme to calculate the CCSD(T)/CBS interaction energies. In this scheme, the MP2/CBS term keeps intact and the CCSD(T) correction term is replaced by a DLPNO-CCSD(T) correction term which is the difference between the DLPNO-CCSD(T) and DLPNO-MP2 interaction energies evaluated in a medium basis set. The interaction energies of the noncovalent systems in the S22, HSG, HBC6, NBC10, and S66 databases were recalculated employing this new scheme. The consistent and tight settings of the truncation parameters for DLPNO-CCSD(T) and DLPNO-MP2 in this noncanonical CCSD(T)/CBS calculations lead to the maximum absolute deviation and root-mean-square deviation from the canonical CCSD(T)/CBS interaction energies of less than or equal to 0.28 kcal/mol and 0.09 kcal/mol, respectively. The high accuracy and low cost of this new computational scheme make it an excellent candidate for the study of large noncovalent systems.  相似文献   

4.
5.
Parametrization of the two-electron reduced density matrix (2-RDM) has recently enabled the direct calculation of electronic energies and 2-RDMs at the computational cost of configuration interaction with single and double excitations. While the original Kollmar energy functional yields energies slightly better than those from coupled cluster with single-double excitations, a general family of energy functionals has recently been developed whose energies approach those from coupled cluster with triple excitations [D. A. Mazziotti, Phys. Rev. Lett. 101, 253002 (2008)]. In this paper we test the parametric 2-RDM method with one of these improved functionals through its application to the conversion of hydrogen peroxide to oxywater. Previous work has predicted the barrier from oxywater to hydrogen peroxide with zero-point energy correction to be 3.3-to-3.9 kcal/mol from coupled cluster with perturbative triple excitations [CCSD(T)] and -2.3 kcal/mol from complete active-space second-order perturbation theory (CASPT2) in augmented polarized triple-zeta basis sets. Using a larger basis set than previously employed for this reaction-an augmented polarized quadruple-zeta basis set (aug-cc-pVQZ)-with extrapolation to the complete basis-set limit, we examined the barrier with two parametric 2-RDM methods and three coupled cluster methods. In the basis-set limit the M parametric 2-RDM method predicts an activation energy of 2.1 kcal/mol while the CCSD(T) barrier becomes 4.2 kcal/mol. The dissociation energy of hydrogen peroxide to hydroxyl radicals is also compared to the activation energy for oxywater formation. We report energies, optimal geometries, dipole moments, and natural occupation numbers. Computed 2-RDMs nearly satisfy necessary N-representability conditions.  相似文献   

6.
Dimers composed of benzene (Bz), 1,3,5-triazine (Tz), cyanogen (Cy) and diacetylene (Di) are used to examine the effects of heterogeneity at the molecular level and at the cluster level on pi...pi stacking energies. The MP2 complete basis set (CBS) limits for the interaction energies (E(int)) of these model systems were determined with extrapolation techniques designed for correlation consistent basis sets. CCSD(T) calculations were used to correct for higher-order correlation effects (deltaE(CCSD)(T)(MP2)) which were as large as +2.81 kcal mol(-1). The introduction of nitrogen atoms into the parallel-slipped dimers of the aforementioned molecules causes significant changes to E(int). The CCSD(T)/CBS E(int) for Di-Cy is -2.47 kcal mol(-1) which is substantially larger than either Cy-Cy (-1.69 kcal mol(-1)) or Di-Di (-1.42 kcal mol(-1)). Similarly, the heteroaromatic Bz-Tz dimer has an E(int) of -3.75 kcal mol(-1) which is much larger than either Tz-Tz (-3.03 kcal mol(-1)) or Bz-Bz (-2.78 kcal mol(-1)). Symmetry-adapted perturbation theory calculations reveal a correlation between the electrostatic component of E(int) and the large increase in the interaction energy for the mixed dimers. However, all components (exchange, induction, dispersion) must be considered to rationalize the observed trend. Another significant conclusion of this work is that basis-set superposition error has a negligible impact on the popular deltaE(CCSD)(T)(MP2) correction, which indicates that counterpoise corrections are not necessary when computing higher-order correlation effects on E(int). Spin-component-scaled MP2 (SCS-MP2 and SCSN-MP2) calculations with a correlation-consistent triple-zeta basis set reproduce the trends in the interaction energies despite overestimating the CCSD(T)/CBS E(int) of Bz-Tz by 20-30%.  相似文献   

7.
Calculations were carried out for 25 isotopologues of the title reaction for various combinations of (35)Cl, (37)Cl, (12)C, (13)C, (14)C, H, and D. The computed rate constants are based on harmonic vibrational frequencies calculated at the CCSD(T)/aug-cc-pVTZ level of theory and X(ij) vibrational anharmonicity coefficients calculated at the CCSD(T) /aug-cc-pVDZ level of theory. For some reactions, anharmonicity coefficients were also computed at the CCSD(T)/aug-cc-pVTZ level of theory. The classical reaction barrier was taken from Eskola et al. [J. Phys. Chem. A 2008, 112, 7391-7401], who extrapolated CCSD(T) calculations to the complete basis set limit. Rate constants were calculated for temperatures from ~100 to ~2000 K. The computed ab initio rate constant for the normal isotopologue is in good agreement with experiments over the entire temperature range (~10% lower than the recommended experimental value at 298 K). The ab initio H/D kinetic isotope effects (KIEs) for CH(3)D, CH(2)D(2), CHD(3), and CD(4) are in very good agreement with literature experimental data. The ab initio (12)C/(13)C KIE is in error by ~2% at 298 K for calculations using X(ij) coefficients computed with the aug-cc-pVDZ basis set, but the error is reduced to ~1% when X(ij) coefficients computed with the larger aug-cc-pVTZ basis set are used. Systematic improvements appear to be possible. The present SCTST results are found to be more accurate than those from other theoretical calculations. Overall, this is a very promising method for computing ab initio kinetic isotope effects.  相似文献   

8.
Accurate ab initio binding energies of alkaline earth metal clusters   总被引:1,自引:0,他引:1  
The effects of basis set superposition error (BSSE) and core-correlation on the electronic binding energies of alkaline earth metal clusters Y(n) (Y = Be, Mg, Ca; n = 2-4) at the Moller-Plesset second-order perturbation theory (MP2) and the single and double coupled cluster method with perturbative triples correction (CCSD(T)) levels are examined using the correlation consistent basis sets cc-pVXZ and cc-pCVXZ (X = D, T, Q, 5). It is found that, while BSSE has a negligible effect for valence-electron-only-correlated calculations for most basis sets, its magnitude becomes more pronounced for all-electron-correlated calculations, including core electrons. By utilizing the negligible effect of BSSE on the binding energies for valence-electron-only-correlated calculations, in combination with the negligible core-correlation effect at the CCSD(T) level, accurate binding energies of these clusters up to pentamers (octamers in the case of the Be clusters) are estimated via the basis set extrapolation of ab initio CCSD(T) correlation energies of the monomer and cluster with only the cc-pVDZ and cc-pVTZ sets, using the basis set and correlation-dependent extrapolation formula recently devised. A comparison between the CCSD(T) and density functional theory (DFT) binding energies is made to identify the most appropriate DFT method for the study of these clusters.  相似文献   

9.
Calculations with the diffusion quantum Monte Carlo method are presented for vanadium oxide molecules VO0/+0(n) with n = 1-4 and for V2O5. Atomization and ionization energies are calculated as well as oxygen abstraction energies. The fixed-node approximation is compared for guide functions with orbitals from B3LYP and BP86 calculations and higher accuracy was obtained with the latter orbitals. Additionally, all-electron and pseudopotential calculations are compared for the oxygen atom. The overall accuracy is found to be comparable to CCSD(T) calculations where experimental data is available.  相似文献   

10.
It is shown that a linear correlation exists between nuclear shielding constants for nine small inorganic and organic molecules (N(2), CO, CO(2), NH(3), CH(4), C(2)H(2), C(2)H(4), C(2)H(6) and C(6)H(6)) calculated with 47 methods (42 DFT methods, RHF, MP2, SOPPA, SOPPA(CCSD), CCSD(T)) and the aug-cc-pVTZ-J basis set and corresponding complete basis set results, estimated from calculations with the family of polarization-consistent pcS-n basis sets. This implies that the remaining basis set error of the aug-cc-pVTZ-J basis set is very similar in DFT and CCSD(T) calculations. As the aug-cc-pVTZ-J basis set is significantly smaller, CCSD(T)/aug-cc-pVTZ-J calculations allow in combination with affordable DFT/pcS-n complete basis set calculations the prediction of nuclear shieldings at the CCSD(T) level of nearly similar accuracy as those, obtained by fitting results obtained from computationally demanding pcS-n calculations at the CCSD(T) limit. A significant saving of computational efforts can thus be achieved by scaling inexpensive CCSD(T)/aug-cc-pVTZ-J calculations of nuclear isotropic shieldings with affordable DFT complete basis set limit corrections.  相似文献   

11.
12.
A comparison of density functionals is made for the calculation of energy and geometry differences for the high- [(5)T(2g): (t(2g))(4)(e(g))(2)] and low- [(1)A(1g): (t(2g))(6)(e(g))(0)] spin states of the hexaquoferrous cation [Fe(H(2)O)(6)](2+). Since very little experimental results are available (except for crystal structures involving the cation in its high-spin state), the primary comparison is with our own complete active-space self-consistent field (CASSCF), second-order perturbation theory-corrected complete active-space self-consistent field (CASPT2), and spectroscopy-oriented configuration interaction (SORCI) calculations. We find that generalized gradient approximations (GGAs) and the B3LYP hybrid functional provide geometries in good agreement with experiment and with our CASSCF calculations provided sufficiently extended basis sets are used (i.e., polarization functions on the iron and polarization and diffuse functions on the water molecules). In contrast, CASPT2 calculations of the low-spin-high-spin energy difference DeltaE(LH)=E(LS)-E(HS) appear to be significantly overestimated due to basis set limitations in the sense that the energy difference of the atomic asymptotes ((5)D-->(1)I excitation of Fe(2+)) are overestimated by about 3000 cm(-1). An empirical shift of the molecular DeltaE(LH) based upon atomic calculations provides a best estimate of 12 000-13 000 cm(-1). Our unshifted SORCI result is 13 300 cm(-1), consistent with previous comparisons between SORCI and experimental excitation energies which suggest that no such empirical shift is needed in conjunction with this method. In contrast, after estimation of incomplete basis set effects, GGAs with one exception underestimate this value by 3000-4000 cm(-1) while the B3LYP functional underestimates it by only about 1000 cm(-1). The exception is the GGA functional RPBE which appears to perform as well as or better than the B3LYP functional for the properties studied here. In order to obtain a best estimate of the molecular DeltaE(LH) within the context of density functional theory (DFT) calculations we have also performed atomic excitation energy calculations using the multiplet sum method. These atomic DFT calculations suggest that no empirical correction is needed for the DFT calculations.  相似文献   

13.
The ground states of the M-NH(3) (M=Na,Al,Ga,In,Cu,Ag) complexes and their cations have been studied with density functional theory and coupled cluster [CCSD(T)] methods. The adiabatic ionization potentials (AIPs) of these complexes are calculated, and these are compared to results from high-resolution zero-electron kinetic energy photoelectron spectroscopy. By extrapolating the CCSD(T) energies to the complete basis set (CBS) limit and including the core-valence, scalar relativistic, spin-orbit, and zero-point corrections, the CCSD(T) method is shown to be able to predict the AIPs of these complexes to better than 6 meV or 0.15 kcal/mol. 27 exchange-correlation functionals, including one in the local density approximation, 13 in the generalized gradient approximation (GGA), and 13 with hybrid GGAs, were benchmarked in the calculations of the AIPs. The B1B95, mPW1PW91, B98, B97-1, PBE1PBE, O3LYP, TPSSh, and HCTH93 functionals give an average error of 0.1 eV for all the complexes studied, with the B98 functional alone yielding a maximum error of 0.1 eV. In addition, the calculated metal-ammonia harmonic stretching frequencies with the CCSD(T) method are in excellent agreement with their experimental values, whereas the B3LYP method tends to underestimate these stretching frequencies. The metal-ammonia binding energies were also calculated at the CCSD(T)/CBS level, and are in excellent agreement with the available experimental values considering the error limits, except for Ag-NH(3) and Ag(+)-NH(3), where the calculations predict stronger bond energies than measured by about 4 kcal/mol, just outside the experimental error bars of +/-3 kcal/mol.  相似文献   

14.
A new explicitly correlated local coupled-cluster method with single and double excitations and a perturbative treatment of triple excitations [DF-LCCSD(T0)-F12x (x = a,b)] is presented. By means of truncating the virtual orbital space to pair-specific local domains (domain approximation) and a simplified treatment of close, weak and distant pairs using LMP2-F12 (pair approximation) the scaling of the computational cost with molecular size is strongly reduced. The basis set incompleteness errors as well as the errors due to the domain approximation are largely eliminated by the explicitly correlated terms. All integrals are computed using efficient density fitting (DF) approximations. The accuracy of the method is investigated for 52 reactions involving medium size molecules. A comparison of DF-LCCSD(T0)-F12x reaction energies with canonical CCSD(T)-F12x calculations shows that the errors introduced by the domain approximation are indeed very small. Care must be taken to keep the errors due to the additional pair approximation equally small, and appropriate distance criteria are recommended. Using these parameters, the root mean square (RMS) deviations of DF-LCCSD(T0)-F12a calculations with triple-ζ basis sets from estimated CCSD(T) complete basis set (CBS) limits and experimental data amount to only 1.5 kJ mol(-1) and 2.9 kJ mol(-1), respectively. For comparison, the RMS deviation of the CCSD(T)/CBS values from the experimental values amounts to 3.0 kJ mol(-1). The potential of the method is demonstrated for five reactions of biochemical or pharmacological interest which include molecules with up to 61 atoms. These calculations show that molecules of this size can now be treated routinely and yield results that are close to the CCSD(T) complete basis set limits.  相似文献   

15.
Moller-Plesset second-order (MP2) perturbation theory breaks down at molecular geometries which are far away from equilibrium. We decompose the MP2 energy into contributions from different orbital subspaces and show that the divergent behavior of the MP2 energy comes from the excitations located within a small (or sometimes even the minimal) active space. The divergent behavior of the MP2 energy at large interfragment distances may be corrected by replacing a small number of terms by their more robust counterparts from coupled-cluster (CCSD) theory. We investigated several schemes of such a substitution, and we find that a coupling between the active-space CCSD and the remaining MP2 amplitudes is necessary to obtain the best results. This naturally leads us to an approach which has previously been examined in the context of cost-saving approximations to CCSD for equilibrium properties by Nooijen [J. Chem. Phys. 111, 10815 (1999)]. The hybrid MP2-CCSD approach, which has the same formal scaling as conventional MP2 theory, provides potential curves with a correct shape for bond-breaking reactions of BH, CH(4), and HF. The error of the MP2-CCSD method (measured against full configuration-interaction data) is smaller than that of MP2 at all interfragment separations and is qualitatively similar to that of full CCSD.  相似文献   

16.
A 3-body:many-body integrated quantum mechanical (QM) fragmentation method for non-covalent clusters is introduced within the ONIOM formalism. The technique captures all 1-, 2-, and 3-body interactions with a high-level electronic structure method, while a less demanding low-level method is employed to recover 4-body and higher-order interactions. When systematically applied to 40 low-lying (H(2)O)(n) isomers ranging in size from n = 3 to 10, the CCSD(T):MP2 3-body:many-body fragmentation scheme deviates from the full CCSD(T) interaction energy by no more than 0.07 kcal mol(-1) (or <0.01 kcal mol(-1) per water). The errors for this QM:QM method increase only slightly for various low-lying isomers of (H(2)O)(16) and (H(2)O)(17) (always within 0.13 kcal mol(-1) of the recently reported canonical CCSD(T)/aug-cc-pVTZ energies). The 3-body:many-body CCSD(T):MP2 procedure is also very efficient because the CCSD(T) computations only need to be performed on subsets of the cluster containing 1, 2, or 3 monomers, which in the current context means the largest CCSD(T) calculations are for 3 water molecules, regardless of the cluster size.  相似文献   

17.
We have investigated the slipped parallel and t-shaped structures of carbon dioxide dimer [(CO(2))(2)] using both conventional and explicitly correlated coupled cluster methods, inclusive and exclusive of counterpoise (CP) correction. We have determined the geometry of both structures with conventional coupled cluster singles doubles and perturbative triples theory [CCSD(T)] and explicitly correlated cluster singles doubles and perturbative triples theory [CCSD(T)-F12b] at the complete basis set (CBS) limits using custom optimization routines. Consistent with previous investigations, we find that the slipped parallel structure corresponds to the global minimum and is 1.09 kJ mol(-1) lower in energy. For a given cardinal number, the optimized geometries and interaction energies of (CO(2))(2) obtained with the explicitly correlated CCSD(T)-F12b method are closer to the CBS limit than the corresponding conventional CCSD(T) results. Furthermore, the magnitude of basis set superposition error (BSSE) in the CCSD(T)-F12b optimized geometries and interaction energies is appreciably smaller than the magnitude of BSSE in the conventional CCSD(T) results. We decompose the CCSD(T) and CCSD(T)-F12b interaction energies into the constituent HF or HF CABS, CCSD or CCSD-F12b, and (T) contributions. We find that the complementary auxiliary basis set (CABS) singles correction and the F12b approximation significantly reduce the magnitude of BSSE at the HF and CCSD levels of theory, respectively. For a given cardinal number, we find that non-CP corrected, unscaled triples CCSD(T)-F12b/VXZ-F12 interaction energies are in overall best agreement with the CBS limit.  相似文献   

18.
Single-reference coupled-cluster calculations employing the completely renormalized CCSD(T) (CR-CCSD(T)) approach have been used to examine the mechanism of the Cope rearrangement of 1,5-hexadiene. In agreement with multireference perturbation theory, the CR-CCSD(T) method favors the concerted mechanism of the Cope rearrangement involving an aromatic transition state. The CCSD(T) approach, which is often regarded as the "gold standard" of electronic structure theory, seems to fail in this case, favoring pathways through diradical structures.  相似文献   

19.
The fragment molecular-orbital (FMO) method was combined with the single-reference coupled-cluster (CC) theory. The developed method (FMO-CC) was applied at the CCSD and CCSD(T) levels of theory, for the cc-pVnZ family of basis sets (n=D,T,Q) to water clusters and glycine oligomers (up to 32 molecules/residues using as large basis sets as possible for the given system). The two- and three-body FMO-CC results are discussed at length, with emphasis on the basis-set dependence and three-body effects. Two- and three-body approximations based on interfragment distances were developed and the values appropriate for their accurate application carefully determined. The error in recovering the correlation energy was several millihartree for the two-body FMO-CC method and in the submillihartree range for the three-body FMO-CC method. In the largest calculations, we were able to perform the CCSD(T) calculations of (H2O)32 with the cc-pVQZ basis set (3680 basis functions) and (GLY)32 with the cc-VDZ basis set (712 correlated electrons). FMO-CC was parallelized using the upper level of the two-layer parallelization scheme. The computational scaling of the two-body FMO-CC method was demonstrated to be nearly linear. As an example of timings, CCSD(T) calculations of (H2O)32 with cc-pVDZ took 13 min on an eight node 3.2-GHz Pentium4 cluster.  相似文献   

20.
The lowest singlet and triplet electronic levels of the A' and A" symmetry species of the neutral copper-nitrosyl (CuNO) system are calculated by ab initio methods at the multi-reference configuration interaction (MRCI) level of theory with single and double excitations, and at the coupled cluster level of theory with both perturbational (CCSD(T)) and full inclusion of triple excitations (CCSDT). Experimental data are difficult to obtain, hence the importance of carrying out calculations as accurate as possible to address the structure and dynamics of this system. This paper aims at validating a theoretical protocol to develop global potential energy surfaces for transition metal nitrosyl complexes. For the MRCI calculations, the comparison of level energies at linear structures and their values from C(2v) and C(s) symmetry restricted calculations has allowed to obtain clear settings regarding atomic basis sizes, active orbital spaces and roots obtained at the multi-configurational self-consistent field (MCSCF) level of theory. It is shown that a complete active space involving 18 valence electrons, 11 molecular orbitals and the prior determination of 12 roots in the MCSCF calculation is needed for overall qualitatively correct results from the MRCI calculations. Atomic basis sets of the valence triple-zeta type are sufficient. The present calculations yield a bound singlet A' ground state for CuNO. The CCSD(T) calculations give a quantitatively more reliable account of electronic correlation close to equilibrium, while the MRCI energies allow to ensure the qualitative assessment needed for global potential energy surfaces. Relativistic coupled cluster calculations using the Douglas-Kroll-Hess Hamiltonian yield a dissociation energy of CuNO into Cu and NO to be (59 ± 5) kJ mol(-1) ((4940 ± 400) hc?cm(-1)). Favorable comparison is made with some of previous theoretical results and a few known experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号