首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel approach based on sol–gel spin coating method to deposit Zn(O,S) thin film using thiourea(TU) as a sulfur source replacing CdS as buffer layer was developed and the influence of TU concentration on the properties of Zn(O,S) thin films and Cu(In,Ga)Se2(CIGS) solar cells were investigated in this paper. It was found by X-ray diffraction and X-ray photoelectron spectroscopy that sol–gel derived Zn(O,S) thin films were amorphous and composed of ZnS, ZnO as well as Zn(OH)2. The variation of the optical band gap as a function of the S/(S+O) ratio was determined by energy-dispersive spectroscopy and UV-VIS-NIR. The results indicated that the minimum value for band gap of approximate 3.72?eV was obtained when the S/(S+O)?=?0.44. Efficiency of up to 7.28% was achieved for a CIGS solar cell with Zn(O,S) buffer layer from 0.2M TU, which was attributed to the optimized conduction band offset (CBO) of +0.45?eV at the CIGS/Zn(O,S) interface.
Zn(O,S) thin films prepared in sol–gel route was used to replace traditional CdS buffer layer deposited by chemical bath deposition method in Cu(In,Ga)Se2 solar cells. The best efficiency was achieved for CIGS/Zn(O,S)/i-ZnO/ITO heterostructure solar cell with S/(S+O)?=?0.18, which was attributed to the optimized conduction band offset (CBO) of +0.45?eV at the CIGS/Zn(O,S) interface.
  相似文献   

2.
Thin films of cadmium sulfide (CdS) have been wet chemically deposited onto fluorine-doped tin oxide (FTO) coated conducting glass substrates by using non-ionic surfactant; Triton-X 100. An aqueous solution contains cadmium sulphate as a cadmium and thiourea as sulphur precursor. Ammonia used as a complexing agent. The results of measurements of the x-ray diffraction, Raman spectroscopy, optical spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, Brunauer Emmett Teller (BET) surface areas and atomic force microscopy were used for the characterization of the films. These results revealed that the films are polycrystalline, consisting of CdS cubic phase. The films show a direct band gap with energy 2.39 eV. The films show interconnected nanowalls like morphology with well-defined surface area. Finally, the photoelectrochemical (PEC) performance of Triton-X mediated CdS thin film samples were studied. The sample shows photoelectrochemical (PEC) performance with maximum short circuit current density (Jsc) 1.71 mA/cm2 for larger area (1 cm2) solar cells.  相似文献   

3.
We have fabricated a three-dimensional (3D) nanostructured indium tin oxide (ITO) film in which the spaces were filled by use of a Cu, In, and Ga precursor solution. This solution has potential for use in bulk heterojunction CuIn x Ga1?x S2 (CIGS) thin-film solar cells. ITO nanorod films ~700 nm thick on glass substrates were synthesized by radio-frequency magnetron sputtering deposition. To ensure complete filling of the gaps in ITO nanorod films, a polymeric binder-free precursor solution was used. In addition, a two-step heating process (oxidation and sulfurization) was used after coating of the precursor solution to make a CIGS absorber film with a minimum of carbon impurities. Superstrate-type solar cell devices with 3D nanostructured films (CIGS–ITO) had a photovoltaic efficiency of 1.11 % despite the absence of a buffer layer (e.g. CdS) between the CIGS and ITO.  相似文献   

4.
《Solid State Sciences》1999,1(4):179-188
The chemical bath deposition (CBD) technique has been successfully used to deposit cadmium sulphide from cadmium chloride and cadmium acetate as the cadmium ion source and thiourea as the sulphur source on both glass microscope slide and indium tin oxide coated glass substrates. Various properties of the films such as surface morphology, crystallinity, optical properties and resistivitiy have been investigated. XRD patterns reveal that the CdS films deposited from cadmium chloride have an hexagonal structure. Their preferential orientation changes from (002) to (100) with the thermal annealing. Films deposited from cadmium acetate are amorphous but improve their crystallinity with annealing. SEM analysis shows that the grains of the as deposited films are randomly shaped and appear to be bigger in the case of the CdS prepared from cadmium chloride. The optical transmission of the layers are in the 70–80 % range for wavelength above the band gap absorption which makes them more appropriate as window material in heterojunction solar cells.  相似文献   

5.
Zn(O,S) is a promising candidate to replace the commonly used CdS buffer layer for Cu(In,Ga)Se2 (CIGS) thin‐film solar cells due to its non‐toxicity and its potential to enhance the conversion efficiency of the CIGS solar cell. The composition of chemical bath deposited (CBD) and sputtered Zn(O,S) layers with thicknesses well below 100 nm was determined by sputtered neutral and secondary ion mass spectrometry (SNMS and SIMS). Despite numerous mass interferences of double‐charged atoms and dimers with single Zn, O and S isotopes, we developed an evaluation algorithm for quantification of SNMS depth profiles of Zn(O,S) layers. In particular, the superposition of double‐charged S and Zn atoms with O and S isotopes is accounted for numerically in the quantification procedure. For sputtered Zn(O,S) layers, the S/(S + O) atomic ratio and the vertical composition profile can be controlled by the O2 content in the gas flow and the substrate temperature during sputtering whereas for CBD Zn(O,S) the S/(S + O) ratio is constant around 0.7–0.8. A Cu‐depleted layer of about 5 nm on the CIGS surface after buffer deposition was observed for both preparation methods. With negative SIMS, we found more hydroxides and carbon residues in CBD Zn(O,S) as compared to sputtered layers. Best cell performance with sputtered Zn(O,S) layers was achieved for S/(S + O) ratios of 0.25–0.40, yielding efficiencies up to 13%. Our solar cells with CBD Zn(O,S) buffers exhibit higher efficiencies due to an improved open‐circuit voltage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
采用简单的磁控溅射方法, 在室温合成了CdS多晶薄膜. 在溅射CdS多晶薄膜过程中, 分别在Ar 气中通入0%、0.88%、1.78%、2.58%和3.40% (体积分数, φ)的O2, 得到不同O含量的CdS多晶薄膜. 通过X射线衍射仪、拉曼光谱仪、扫描电子显微镜、X射线光电子能谱仪、紫外-可见光谱仪对得到的CdS多晶薄膜进行表征.分析结果表明: O的掺入能得到结合更加致密, 晶粒尺寸更小的CdS多晶薄膜; 与溅射气体中没有O2时制备的CdS多晶薄膜的光学带隙(2.48 eV)相比, 当溅射气体中O2的含量为0.88%和1.78% (φ)时, 制备得到的CdS多晶薄膜具有更大的光学带隙, 分别为2.60和2.65 eV; 而当溅射气体中O2的含量为2.58%和3.40% (φ)时, 得到的CdS光学带隙分别为2.50 和2.49 eV, 与没有掺杂O的CdS的光学带隙(2.48 eV)相当; 当溅射气体中O2的含量为0.88% (φ)时, 制备的CdS多晶薄膜具有最好的结晶质量. 通过磁控溅射方法, 在溅射气体中O2含量为0.88% (φ)条件下制备的CdS多晶薄膜表面沉积了CdTe 多晶薄膜并在CdCl2气氛中进行了高温退火处理, 对退火前后的CdTe多晶薄膜进行了表征. 表征结果显示: CdS中掺入O能得到结合更紧密、退火后晶粒尺寸更大的CdTe多晶薄膜. 通过磁控溅射方法, 在CdS制备过程中于Ar 中掺入O2, 在室温就能得到具有更大光学带隙的CdS多晶薄膜, 该方法是一种简单和有效的方法, 非常适用于大规模工业化生产.  相似文献   

7.
采用化学水浴沉积法(CBD)在钠钙玻璃衬底上制备硫化镉(CdS)薄膜,研究不同硫酸镉(CdSO_4)浓度下产生的本征缺陷对CdS薄膜光电学性质的影响。采用光致发光光谱、紫外-可见分光光度计及霍尔效应测试系统对薄膜的本征缺陷、光学及电学性质进行分析,发现CdS薄膜主要存在镉间隙(Cdi)及硫空位(VS)等本征缺陷,且VS随CdSO_4浓度的降低而逐渐减少。同时,VS缺陷的减少有利于薄膜透过率的提高,但在一定程度上降低了薄膜的电导率。根据透过率及其相关公式可知,半导体材料中透过率与电导率成e指数反比关系,适当减小薄膜的电导率可以使其透过率得到大幅度的提高,理论解释与实验结果相一致。  相似文献   

8.
Cubic InN films have been grown on MgO substrates with HfN buffer layers by pulsed laser deposition (PLD). It has been found that the use of HfN (100) buffer layers allows us to grow cubic InN (100) films with an in-plane epitaxial relationship of [001]InN//[001]HfN//[001]MgO. X-ray diffraction and electron back-scattered diffraction measurements have revealed that the phase purity of the cubic InN films was as high as 99%, which can be attributed to the use of HfN buffer layers and the enhanced surface migration of the film precursors by the use of PLD.  相似文献   

9.
Zinc sulfide (ZnS) thin films have been successfully deposited via spray pyrolysis using an aqueous solution of thiourea and zinc acetate onto glass substrate. The effect of varying substrate temperature (150, 200,250 and 300 °C) on structure and optical properties is presented. The films have been characterized by X- ray diffraction (XRD), UV-Vis-NIR spectrometry, photoluminescence (PL) spectroscopy and field emission scanning electron microscopy (FESEM). All the deposited ZnS films exhibit a cubic structure, while crystallinity and morphology are found to depend on spray temperature. PL analysis indicates the presence of violet and green emissions arising from Zn and S vacancies. The value of bandgap of ZnS films is found to decrease slightly with increasing substrate temperature; varying in the range 3.52–3.25 eV, most probably associated with the formation of Zn(S,O) solid solution.  相似文献   

10.
We investigated the structural, optical and magnetic properties of Mn-doped zinc oxysulfide films. Zn(O,S) films were deposited by a spray pyrolysis method on glass substrate. A thin Mn layer evaporated on these films served as the source for the diffusion doping. The XRD pattern of undoped films revealed the presence of two wurtzite phases corresponding to ZnS and ZnO with a strong preferred orientation along the ZnS (0 0 2) hexagonal plane direction. SEM showed a similar surface morphology for the undoped and Mn-doped films, displaying regular arrays of hexagonal micro-rods perpendicular to the substrate. The optical transmission measurements showed that both undoped and Mn diffusion-doped films had a low average transmittance less than about 10%. The gap energy is decreased from 3.42 to 3.33 eV upon annealing at 400 °C. Photoluminescence studies at 300 K show that the incorporation of manganese leads to a decrease of deep level band intensity compared to undoped sample. Clear ferromagnetic loops were observed for the Mn-doped Zn(O,S) films, which might be due to the presence of point defects.  相似文献   

11.
The electronic band structure at the Zn(1-x)Mg(x)O/Cu(In(0.7)Ga(0.3))Se(2) interface was investigated for its potential application in Cd-free Cu(In,Ga)Se(2) thin film solar cells. Zn(1-x)Mg(x)O thin films with various Mg contents were grown by atomic layer deposition on Cu(In(0.7)Ga(0.3))Se(2) absorbers, which were deposited by the co-evaporation of Cu, In, Ga, and Se elemental sources. The electron emissions from the valence band and core levels were measured by a depth profile technique using X-ray and ultraviolet photoelectron spectroscopy. The valence band maximum positions are around 3.17 eV for both Zn(0.9)Mg(0.1)O and Zn(0.8)Mg(0.2)O films, while the valence band maximum value for CIGS is 0.48 eV. As a result, the valence band offset value between the bulk Zn(1-x)Mg(x)O (x = 0.1 and x = 0.2) region and the bulk CIGS region was 2.69 eV. The valence band offset value at the Zn(1-x)Mg(x)O/CIGS interface was found to be 2.55 eV after considering a small band bending in the interface region. The bandgap energy of Zn(1-x)Mg(x)O films increased from 3.25 to 3.76 eV as the Mg content increased from 0% to 25%. The combination of the valence band offset values and the bandgap energy of Zn(1-x)Mg(x)O films results in the flat (0 eV) and cliff (-0.23 eV) conduction band alignments at the Zn(0.8)Mg(0.2)O/Cu(In(0.7)Ga(0.3))Se(2) and Zn(0.9)Mg(0.1)O/Cu(In(0.7)Ga(0.3))Se(2) interfaces, respectively. The experimental results suggest that the bandgap energy of Zn(1-x)Mg(x)O films is the main factor that determines the conduction band offset at the Zn(1-x)Mg(x)O/Cu(In(0.7)Ga(0.3))Se(2) interface. Based on these results, we conclude that a Zn(1-x)Mg(x)O film with a relatively high bandgap energy is necessary to create a suitable conduction band offset at the Zn(1-x)Mg(x)O/CIGS interface to obtain a robust heterojunction. Also, ALD Zn(1-x)Mg(x)O films can be considered as a promising alternative buffer material to replace the toxic CdS for environmental safety.  相似文献   

12.
采用超声搅拌化学浴法(UCBD)在SnO2:F透明导电玻璃衬底上制备了CdS薄膜.研究了退火和CdCl2处理对UCBD-CdS薄膜的表面形貌、晶体结构和直接带隙的影响,比较了沉积时间对UCBD-CdS薄膜中CdS聚集体颗粒大小和堆积致密性的影响.结果表明,CdCl2处理可使CdS聚集体中的小颗粒重新熔合在一起,但CdS聚集体的大小并没有改变.在UCBD-CdS薄膜的沉积过程中,CdS薄膜的横向和纵向生长速率之比会随着沉积时间的不同而改变,且沉积时间是获得大颗粒的CdS聚集体和致密的UCBD-CdS薄膜的重要影响因素.当沉积时间为40min时,获得的UCBD-CdS薄膜较致密,CdS聚集体的大小为180nm,膜厚为80.8nm,适合作为薄膜太阳电池的窗口层.  相似文献   

13.
CdS thin films have been deposited by dip technique using succinic acid as a complexing agent. The structural characterizations of films have been studied by X-ray diffraction. X-ray diffraction pattern prove crystallinity of the deposited films that crystallize in the cubic phase of CdS. The films show high absorption and band gap value which were found to be 2.58 eV. The specific conductivity of the film was found to be in the order of 10?7 cm)?1.  相似文献   

14.
Cadmium selenide (CdSe) thin films were chemically deposited at room temperature, from aqueous ammoniacal solution using Cd(CH(3)COO)(2) as Cd2+ and Na(2)SeSO(3) as Se2- ion sources. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective, and red-orange in color. The as-deposited CdSe layers grew with nanocrystalline sphalerite cubic structure along with the amorphous phase present in it, with optical band gap E(g) = 2.3 eV. The films were annealed in air atmosphere for 4 h at different temperatures and characterized for compositional, structural, morphological, and optical properties. XRD and SEM studies clearly revealed the systematic phase transformation of CdSe films from metastable nanocrystalline cubic (zinc blende type) to a mixture of cubic and hexagonal (wurtzite type), and finally into stable hexagonal through different intermediate phases with an improvement in the crystal quality. The films showed a red shift in their optical spectra after annealing.  相似文献   

15.
CdS thin films have been deposited onto FTO/glass substrates by two different techniques, electrochemical deposition (ECD) and chemical bath deposition (CBD). Feasibility of using these two film types in photoelectrochemical processes has been critically investigated here. The films were comparatively characterized by a number of techniques (solid state absorption spectra, solid state photoluminescence spectra, XRD and SEM). PEC characteristics of the electrodes, including current density–voltage (JV) plots, conversion efficiency (η), stability and fill-factor (FF) were then studied. The results show that both systems involved nano-sized CdS particles living in coagulates. The ECD was thinner and more uniform than the CBD system. The CBD films were more effective in PEC processes than the ECD counterparts. Effect of annealing on characteristics of both electrode systems has been investigated. Annealing enhanced both film characteristics, but the CBD was affected to a higher extent, and the annealed CBD film was more effective than the ECD counterpart.  相似文献   

16.
Reaction of L-cysteine with M(NO3)2 x xH2O (M = Cd, Zn) generates M(L-cysteinate), which feature one-dimensional substructures that can be viewed as fragments of bulk structures of CdS (rock salt high pressure phase) and ZnS (wurtzite) because of the bridging modes accessible to the sulfur atom of L-cysteine. The MS substructures are arranged in a regular and periodic fashion within the crystal via the carboxylate function of L-cysteine. Considering the structural similarities with bulk materials, the optical properties of M(L-cysteinate) were studied and indicate blue shifts of the band gap of 2.59 eV (M = Cd, compared to CdS rock salt) and 1.37 eV (M = Zn, compared to ZnS wurtzite) with respect to the bulk MS structures, due to the low dimensionality of the metal-sulfur arrangement. The chelating nature of the cysteine ligand imposes an unusual mer arrangement of three binding S moieties at Cd with a correspondingly high Cd coordination number in a chalcogenide-based material. Density of states calculations show strong electronic structure similarities with the bulk phases and rationalize the band gap changes.  相似文献   

17.
CuIn1–xGaxSe2 [CIGS; x=Ga/(In+Ga)] thin films are among of the best candidates as absorber materials for solar cell applications. The material quality and main properties of the polycrystalline absorber layer are critically influenced by deviations in the stoichiometry, particularly in the Cu/(In+Ga) atomic ratio. In this work a simple, sensitive and accurate method has been developed for the quantitative determination of these thin films by inductively coupled plasma optical emission spectrometry (ICP-OES). The proposed method involves an acid digestion of the samples to achieve the complete solubilization of CIGS, followed by the analytical determination by ICP-OES. A digestion procedure with 50% HNO3 alone or in the presence of 10% HCl was performed to dissolve those thin films deposited on glass or Mo-coated glass substrates, respectively. Two analytical lines were selected for each element (Cu 324.754 and 327.396 nm, Ga 294.364 and 417.206 nm, In 303.936 and 325.609 nm, Se 196.090 and 203.985 nm, and Mo 202.030 and 379.825 nm) and a study of spectral interferences was performed which showed them to be suitable, since they offered a high sensitivity and no significant inter-element interferences were detected. Detection limits for all elements at the selected lines were found to be appropriate for this kind of application, and the relative standard deviations were lower than 1.5% for all elements with the exception of Se (about 5%). The Cu/(In+Ga) atomic ratios obtained from the application of this method to CIGS thin films were consistent with the study of the structural and morphological properties by X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

18.
本文采用简易的化学水浴沉积法和自牺牲模板法制备CdS、CdSe薄膜,对两种薄膜进行了XRD表征,比较了两种薄膜的紫外吸收光谱并研究了CdS、CdSe薄膜作为太阳能电池中的光阳极时所产生的光电流和光电压,对两种薄膜的电化学性能进行了比较.  相似文献   

19.
Kesterite Cu_2ZnSn(S,Se)_4(CZTSSe)solar cells have drawn worldwide attention for their promising photovoltaics performance and earth-abundant element composition,yet the record efficiency of this type of device is still far lower than its theoretical conversion efficiency.Undesirable band alignment and severe non-radiative recombination at CZTSSe/CdS heterojunction interfaces are the major causes limiting the current/voltage output and overall device performance.Herein,we propose a novel two-step CdS deposition strategy to improve the quality of CZTSSe/CdS heterojunction interface and thereby improve the performance of CZTSSe solar cell.The two-step strategy includes firstly pre-deposits CdS thin layer on CZTSSe absorber layer by chemical bath deposition(CBD),followed with a mild heat treatment to facilitate element inter-diffusion,and secondly deposits an appropriate thickness of CdS layer by CBD to cover the whole surface of pre-deposited CdS and CZTSSe layers.The solar energy conversion efficiency of CZTSSe solar cells with two-step deposited CdS layer approaches to 8.76%(with an active area of about 0.19 cm~2),which shows an encouraging improvement of over 87.98% or 30.16% compared to the devices with traditional CBD-deposited CdS layer without and with the mild annealing process,respectively.The performance enhancement by the two-step CdS deposition is attributed to the formation of more favorable band alignment at CZTSSe/CdS interface as well as the effective decrease in interfacial recombination paths on the basis of material and device characterizations.The two-step CdS deposition strategy is simple but effective,and should have large room to improve the quality of CZTSSe/CdS heterojunction interface and further lift up the conversion efficiency of CZTSSe solar cells.  相似文献   

20.
A novel approach was developed to prepare thin films of nanosized ZnS-passivated CdS particles via a metal-organic chemical vapor deposition (MOCVD) process with co-fed single source precursors of CdS and ZnS. Single source precursors of CdS and ZnS with sufficiently different reactivity, as judged from thermogravimetry analysis, were prepared and paired up to form ZnS-passivated CdS, (CdS)ZnS, and CdS-modified ZnS, (ZnS)CdS, particle films in a one-step process. For comparison purposes, sequential layer growth of CdS/ZnS and ZnS/CdS particle films was also conducted, and single compound particle films were prepared. These films were characterized with absorption spectrometry, photoluminescence spectroscopy, scanning electron microscopy, and powder X-ray diffraction spectra. The photoluminescence efficiency of the resulting composite particle film of ZnS-passivated CdS was significantly enhanced as compared to that of the plain CdS film, due to the effective passivation of surface electronic states of CdS by ZnS, a material with a higher conduction band than that of CdS. As for particle films of CdS-modified ZnS, a decay in photoluminescence efficiency was observed. The enhancement or decay in photoluminescence efficiency was much more pronounced for the passivated and modified system than for the sequential layer system, proportional to the interfacial area between the CdS and ZnS phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号