首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the synthesis of nanosized particles based on bio-compatible polyethylene–polypropylene glycol (pluronic) materials. In aqueous solution, mini-emulsification of pluronic with two pyrimidine chromophores leads to nanoparticles with hydrodynamic radius below 100?nm. We have demonstrated that these probes exhibit a fast and fully reversible solvatochromic behaviour from yellow to purple when decreasing the pH solution. The average acidity constant of both dyes incorporated in pluronic mainly originate from the non-substituted pyrimidine (1,3-diazine) core. The close functionalization of the pyrimidine with pyridyl groups leads to a tridentate ligand suitable for metal cations complexation.
Figure
Aqueous nanoparticles of pluronic triblock copolymer incorporating pyrimidine chromophores are sensitive to pH changes: protonation of the dyes within the micelles core occurs in strong acidic aqueous media leading to purple coloration when compared to yellow colour in neutral or basic pH. This solvatochromic behaviour is fully reversible.  相似文献   

2.
Model foldable polymers with sequences of rigid hydrophobic chromophores and flexible hydrophilic tetra(ethylene glycol) were synthesized and used as a paradigm for studying molecular-folding and self-assembly phenomena. Our results demonstrate that intramolecular association or folding prevails over intermolecular interaction or self-assembling in the concentration region from 1 microM to 0.1 M. Importantly, folded polymeric nanostructures have absorption and fluorescence properties that are distinct from those of unfolded polymers or free monomers. We hypothesize that the origins of folding and self-assembly come from interactions between molecular units, and that the key parameter that regulates the on-and-off of such interactions is the distance R separating the two molecular units. Each molecular unit produces a characteristic force field, and when another molecular unit enters this field, the probability that the two units will interact increases significantly. A preliminary estimate of the radius of such a force field for the perylene tetracarboxylic diimide chromophore is about 90-120 A. As a result, phenomena associated with folding or self-assembly of molecular species are observed when these conditions are met in solution.  相似文献   

3.
Abstract— C-phycocyanin from Synechococcus sp. ( Anacystis nidulans ) shows photoreversible absorption changes when dissolved in buffer containing 75% ethylene glycol (vol/vol). Irradiation with red light (638 nm) causes a 7.5% decrease in absorbance around the absorption maximum (620 m), while the absorbance around 500 nm increases. Subsequent irradiation with green light (500 nm) partially reverses this change. Final photoreversibility at around 620 nm amounts to ca. 2.5% of the maximum absorbance. These reactions are ascribed to two interconvertible species PCr and PCg, the former with a higher absorbance in the red. the latter in the green. The rate of dark reversion from PCg to PCr is strongly enhanced by ferricyanide. It is proposed that with this reagent, dark reversion occurs via an oxidized form of PCg. Furthermore, ferricyanide in the presence of ethylene glycol is capable of reversibly oxidizing part of the chromophores of C-phycocyanin, presumably to a radical. In the absence of ethylene glycol, however, ferricyanide causes total irreversible bleaching of the pigment in the dark. The induced photoreversibility of C-phycocyanin is ascribed to the perturbing action on the protein structure by ethylene glycol in high concentrations. This solvent proved the most suitable perturbant of several compounds tested.  相似文献   

4.
Design of nanohybrid systems possessing several ruthenium trisbipyridine (Ru(bpy)(3)(2+)) chromophores on the surface of gold nanoparticles, by adopting a place exchange reaction, was reported and their photophysical properties were tuned by varying the density of chromophores. The charge shift between the excited and ground-state Ru(bpy)(3)(2+) chromophores was reported for the first time, leading to the formation of Ru(bpy)(3)(+) and Ru(bpy)(3)(3+). Electron-transfer products were not observed on decreasing the concentration of Ru(bpy)(3)(2+) functionalized on Au nanoparticles or in a saturated solution of unbound chromophores. The close proximity of the chromophores on periphery of the gold core may lead to an electron transfer reaction and the products sustained for several nanoseconds before undergoing recombination, probably due to the stabilizing effect of the polar ethylene glycol moieties embedded between the chromophore groups.  相似文献   

5.
There is substantial interest in dyads in which C(60) is covalently linked to electron donors, such as porphyrins, which absorb light strongly in the visible region. We present here the details of the syntheses of such compounds, which can be broadly organized into categories depending upon the nature of the linker joining the two chromophores. The structural aspects of intramolecular electronic interaction that we have sought to explore have dictated the synthetic strategies employed to generate these classes of molecules. Flexible glycol linkers were used to allow close approach between the fullerene and porphyrin, facilitating through-space interactions. These linkers also allowed studies of the effects of metal cation complexation. Naphthalene and alkyne linkers were used to examine the possible effects a conjugated or aromatic linker might have on photophysical properties. Finally, steroids were used as linkers in dyads expected to possess a large distance between the two chromophores, in which only through-bond interactions between the fullerene and porphyrin should be possible.  相似文献   

6.
We present a general approach for the selective imaging and killing of cancer cells using protein-activated near-infrared emitting and cytotoxic oxygen generating nanoparticles. Poly(propargyl acrylate) (PA) particles were surface modified through the copper-catalyzed azide/alkyne cycloaddition of azide-terminated indocyanine green (azICG), a near-infrared emitter, and poly(ethylene glycol) (azPEG) chains of various molecular weights. The placement of azICG onto the surface of the particles allowed for the chromophores to complex with bovine serum albumin when dispersed in PBS that resulted in an enhancement of the dye emission. In addition, the inclusion of azPEG with the chromophores onto the particle surface resulted in a synergistic ninefold enhancement of the fluorescence intensity, with azPEGs of increasing molecular weight amplifying the response. Human liver carcinoma cells (HepG2) overexpress albumin proteins and could be employed to activate the fluorescence of the nanoparticles. Preliminary PDT studies with HepG2 cells combined with the modified particles indicated that a minor exposure of 780 nm radiation resulted in a statistically significant reduction in cell growth.  相似文献   

7.
A series of well-defined linear multichromophoric foldamers with a specific sequence of alternating rigid perylene chromophores and flexible ethylene glycol chains were studied by single molecule fluorescence spectroscopy. Monomer showed minor spectral fluctuations compared to trimer and hexamer, which showed unusual and colorful spectral dynamics attributed to a stochastic photoinduced unfolding/folding phenomenon. The range of spectral shapes observed indicates varying degrees of pi-pi interaction between adjacent chromophores, with vibronically resolved green emission indicating completely unfolded structures and broad red emission indicating highly coupled and extensively folded pi-stacks. The rate of switching between different spectral shapes in the spectral trajectories suggests the existence of multiple pathways between the folded and unfolded states.  相似文献   

8.
A blend of a newly synthesized polyfluorene(PDHBF) and polyvinylcarbazole(PVK) exhibits a photoluminescence(PL) emission spectrum of PDHBF without an increase in the PL intensity on photoexcitation at 340 nm, the UV-visible absorption maximum of PVK, despite of a substantial spectrum overlap. However, the indirect photoexcitation of the blend suppresses the secondary emission of the PL with the maximum at 520 nm. The chromophores generating the secondary emission are formed when the chromophores are photoexcited above the critical energy level of an excited state. The chromophores formed by the energy transfer have energy lower than the critical energy and fail to form the excimers. A low temperature PL study of the blend in a cryogenic chamber proves that the energy transfer in the system takes place mainly between the excimers of PVK generated by the partially eclipsed dimeric states of two carbazole units and the fluorophores of PDHBF.  相似文献   

9.
5,10,15,20-Tetrakis(4-hydroxyphenyl)porphyrin was functionalized by covalent attachment of poly(ethylene glycol) (PEG) chains of various molecular weights, 350, 2000, and 5000 Da. The properties of PEG-functionalized tetraarylporphyrins in aqueous solution and their interactions with liposomes have been studied. Electronic absorption spectroscopy, dynamic light scattering, atomic force microscopy, and fluorescence quenching were used to monitor aggregation of porphyrin chromophores and behavior of the attached PEG chains in the aqueous solution. The tendency for aggregation of porphyrin chromophores in aqueous solution and the efficiency of fluorescence quenching by KI decrease with increasing length of PEG chain linked to the porphyrin ring. The experimental results indicate that polymer clusters are present in aqueous solution of all pegylated porphyrins. The interactions between the pegylated porphyrins and phosphatidylcholine liposomes in the aqueous solution were studied using the fluorescence methods. The apparent binding constants of porphyrin chromophores to liposomes were determined. The degree of binding was found to be dependent on the molecular weight of the attached polymer.  相似文献   

10.
Two routes for the introduction of highly fluorescent peryleneimide chromophores into the scaffolding of polyphenylene dendrimers via iterative Diels-Alder cycloadditions are presented. The key intermediates for the divergent dendrimer buildup were two cyclopentadienone branching units carrying two peryleneimides and two masked terminal alkynes. The difference between the two reagents is the mode of incorporation of the chromophores. In the first case, the chromophores were attached to the alpha-position of the tetraphenylcyclopentadienones. In the second case, peryleneimides are used as a "spacer" in the beta-position of the cyclopentadienones giving rise to dendrimers with extended molecular diameters (up to 12 nm) and 24 chromophores within their scaffold. Absorption and emission characteristics of the new multichromophoric nanoparticles were investigated and compared to those of the parent dyes. Additionally, an asymmetrically substituted first-generation dendrimer with six perylene diimide chromophores and one ester functionality is reported. The ester serves as a potential anchor group, and this nanoemitter paves the way to a multichromophoric fluorescence label. All dendrimers have good solubility in common organic solvents, high fluorescence quantum yields, and defined distances between the chromophores, making them attractive candidates for single-molecule spectroscopy.  相似文献   

11.
Following on the recent experimental demonstration of a discrepancy between the nonlinear optical (NLO) behavior of several pi-conjugated chromophores and their assumed octupolar symmetry, the authors investigate how geometrical distortions influence the NLO response of multipolar push-pull molecules. Their analytical model is set on a basis of valence-bond and charge-transfer states to estimate the hyperpolarizability of organic and metallo-organic chromophores using the lowest possible number of variables. Since symmetry breakdown changes the definition of the molecular Cartesian framework, tensorial spherical coordinates are implemented. The evolution of the nonlinear molecular anisotropy with possible rotational deviations is then evaluated for two recently studied chromophores. Zero-frequency calculations show that, outside optical resonance, weak geometrical distortions lead to strong anisotropy variations in agreement with experimental data. Their goal is to underscore which molecular engineering strategies should be applied when designing a photoisomerizable nonlinear octupole.  相似文献   

12.
We report on a study of singlet-singlet annihilation kinetics in a series of Zn(II)-porphyrin-appended dendrimers, where the energy transfer efficiency is significantly improved by extending the molecular chain that connects the light-harvesting chromophores to the dendrimeric backbone with one additional carbon. For the largest dendrimer having 64 Zn(II)-porphyrins, only approximately 10% of the excitation intensity is needed in order to observe the same extent of annihilation in the dendrimers with the additional carbon in the connecting chain as compared to those without. Complete annihilation, until only one chromophore remains excited, now occurs within subunits of seven chromophores, when half of the chromophores are excited. The improvement of the annihilation efficiency in the largest dendrimer with 64 porphyrins can be explained by the presence of a the two-step delayed annihilation process, involving energy hopping from excited to nonexcited chromophores prior to annihilation. In the smallest dendrimer with only four chromophores, delayed annihilation is not present, since the direct annihilation process is more efficient than the two-step delayed annihilation process. As the dendrimer size increases and the chances of originally exciting two neighboring chromophores decreases, the delayed annihilation process becomes more visible. The additional carbon, added to the connecting chain, results in more favorable chromophore distances and orientations for energy hopping. Hence, the improved energy transfer properties makes the Zn(II)-porphyrin-appended dendrimers with the additional carbon promising candidates as light-harvesting antennas for artificial photosynthesis.  相似文献   

13.
Orientation and organization of two amphiphilic push-pull chromophores mixed with two phospholipids (dipalmitoylphosphatidylcholine and dioleoylphosphatidylcholine) in Langmuir-Blodgett (LB) monolayers are investigated by second harmonic generation. The LB monolayers have also been characterized by atomic force microscopy and UV-vis spectroscopy. The effective molecular orientations and hyperpolarizabilities of the chromophores are studied as a function of the phospholipid concentrations. The experimental results are discussed within the frame of a model of orientational distribution of the chromophores which gives the orientational mean angle and bounds on the orientational disorder. The mean orientation of the chromophores is found to be within 45-55 degrees whereas their hyperpolarizability coefficients, measured with respect to quartz, are estimated to be in the range (0.3-0.7) x 10(-27) esu taking account of the maximal orientational disorder.  相似文献   

14.
A series of end-capped triply branched dendritic chromophores have been studied by means of density functional theory calculations. It is found that the second order nonlinear optical properties of the end-capped dendrimers are strongly dependent on the mutual orientations of the three chromophores, numbers of caps and the conjugation length of the chromophores. Large enhancement of the ˉrst hyperpolarizability can be obtained when dipole moments of three branches in the dendrimers are highly parallelized.  相似文献   

15.
Abstract— C-phycocyanin dissolved in buffer containing 75% ethylene glycol (vol/vol) shows photorevers-ible reactions which are ascribed to the interconversion by light of two species: PCr, PCg. After denaturation with formic acid, the chromophore cation of PCg, can be irreversibly photoconverted to that of PCr A conversion of the chromophore of denatured PCg, to that of denatured PCr also occurs after adjustment of the pH to about 8. Under the same conditions the chromophore of allophycocyanin shows similar reactions. Moreover, the reactions of the chromophores of the denatured species of these phycobiliproteins are similar to the reactions of the chromophore of the denatured species Pfr of photochrome.  相似文献   

16.
We investigate the quantum dynamics of energy and charge transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. This complex consists of six light-harvesting chromophores and an electron-acceptor fullerene. To describe quantum effects on a femtosecond time scale, we derive the set of exact non-Markovian equations for the Heisenberg operators of this photosynthetic complex in contact with a Gaussian heat bath. With these equations we can analyze the regime of strong system-bath interactions, where reorganization energies are of the order of the intersite exciton couplings. We show that the energy of the initially excited antenna chromophores is efficiently funneled to the porphyrin-fullerene reaction center, where a charge-separated state is set up in a few picoseconds, with a quantum yield of the order of 95%. In the single-exciton regime, with one antenna chromophore being initially excited, we observe quantum beatings of energy between two resonant antenna chromophores with a decoherence time of ~100 fs. We also analyze the double-exciton regime, when two porphyrin molecules involved in the reaction center are initially excited. In this regime we obtain pronounced quantum oscillations of the charge on the fullerene molecule with a decoherence time of about 20 fs (at liquid nitrogen temperatures). These results show a way to directly detect quantum effects in artificial photosynthetic systems.  相似文献   

17.
Dielectric relaxation spectra of two closely related glass formers, dipropylene glycol [H-(C3H6O)2-OH] and dipropylene glycol dimethyl ether [CH3-O-(C3H6O)2-CH3], were measured at ambient and elevated pressures in the supercooled and the glassy states are presented. Hydrogen bonds formed in dipropylene glycol are removed when its ends are replaced by two methyl groups to become dipropylene glycol dimethyl ether. In the process, the primary relaxation, the excess wing, and the resolved secondary relaxation of dipropylene glycol are all modified when the structure is transformed to become dipropylene glycol dimethyl ether. The modifications include the pressure and temperature dependences of these relaxation processes and their interrelations. Thus, by comparing the dielectric spectra of these two closely related glass formers at ambient and elevated pressures, the differences in the relaxation dynamics and properties in the presence and absence of hydrogen bonding are identified.  相似文献   

18.
A macrocyclic trichromophore bundle 1 with parallel-aligned dipole moments has been synthesized to study the influence of aggregation and orientation of a nonlinear optical (NLO) chromophore on its optical properties. The linear and nonlinear optical properties of 1 and a single chromophore standard 2 have been studied by UV-vis absorption, fluorescence, solvatochromic spectrometry, and hyper-Rayleigh scattering (HRS). Reduced first-order hyperpolarizability beta, hypsochromic shift, enhanced solvatochromic shifts, and fluorescence quenching for individual chromophores were observed when 1 was compared with 2. Analysis of the data showed that the transition dipole moment changes only slightly when the chromophores are parallel aligned in the bundle architecture. However, the apparent hyperpolarizability of the individual chromophores decreased significantly by about 20%. The reduction in beta for the individual chromophores in 1 is largely due to the hypsochromic shift, i.e., excitation energy increase of the interband (charge-transfer) energy gap and the reduced difference between the ground-state and excited-state dipole moments. The hypsochromic shift and fluorescence quenching are consistent with exciton theory. Possible reasons for the enhanced solvatochromic shift are discussed.  相似文献   

19.
Research into the efficiency of photosynthetic light harvesting has focused on two factors: (1) entanglement of chromophores, and (2) environmental noise. While chromophores are conjugated π-bonding molecules with strongly correlated electrons, previous models have treated this correlation implicitly without a mathematical variable to gauge correlation-enhanced efficiency. Here we generalize the single-electron/exciton models to a multi-electron/exciton model that explicitly shows the effects of enhanced electron correlation within chromophores on the efficiency of energy transfer. The model provides more detailed insight into the interplay of electron correlation within chromophores and electron entanglement between chromophores. Exploiting this interplay is assisting in the design of new energy-efficient materials, which are just beginning to emerge.  相似文献   

20.
We report a detailed quantum-chemical investigation of donor-acceptor substituted dipolar nonlinear optical chromophores incorporating the 4-(dimethylamino)phenyl donor end group and a variety of strong heterocyclic acceptor end groups, including tricyanofurans and tricyanopyrroles. In particular, we study the variation of the molecular second-order polarizability (beta) with the acceptor end group and when inserting auxiliary donors (thiophene) and acceptors (thiazole) into the pi bridge. Both finite-field calculations (in the context of local contributions) and sum-over-states calculations were carried out in order to probe the relationship between beta and the chemical structure of the various chromophores. The trends obtained with these two methods are fully consistent. The large beta values (up to 700 x 10(-30) esu) as well as the observed tunability of the optical absorption maximum (lambda(max)) make the chromophores investigated here interesting candidates for use in electro-optic applications at telecommunications wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号