首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
二氨基硫脲与芳香醛(酮)反应,合成了3个三齿Schiff碱配体;配体与二苄基二氯化锡或三苄基氯化锡反应合成了6个未见文献报道的三齿配体杂环有机锡(Ⅳ)配合物,其结构经1H NMR, IR和元素分析表征.  相似文献   

2.
由混合二烃基二氯化锡(RR'SnCl_2)与水杨醛缩苯胺类Schiff碱(2-HOC_6H_4CH=NAr)反应,合成了14种新的有机锡配合物。经元素分析、IR、NMR和TG-DSC测定,确定配合物的组成是有机锡与Schiff碱的1:1配合物,配体以酚羟基氧原子与锡原子配位,摩尔电导率测定表明配合物均为非电解质。  相似文献   

3.
混合二烃基二氯化锡与水杨醛缩苯胺类Schiff减配合物的…   总被引:4,自引:1,他引:4  
由混合二烃基二氯化锡与水杨醛缩苯胺类Schiff碱反应,合成了24种新的有机锡配合物。经元素分析、NMR“TG-DSC测定和X射线粉末衍射分析,确定有14种有机锡与Schiff碱的1:1配合物,10种是1:2配合物。配体是以酚羟基氧原子与锡原子配位,摩尔电导率测定表明这些配合物均为非电解质。  相似文献   

4.
由混合二烃基二氯化锡 (RR′Sn Cl2 )与 2 -羟基 - 1 -萘醛缩苯胺类席夫碱反应 ,合成了 1 8种新的有机锡配合物。经元素分析 ,IR、1 H NMR、1 3 C NMR和 TG- DSC测定 ,确认配合物为有机锡与席夫碱的 1 2 1加成物 ,配体以酚羟基氧原子和锡原子配位。  相似文献   

5.
由混合二烃基二氯化锡(RR′SnCl2)与2-羟基-1-萘醛缩苯胺类席夫碱反应,合成了18种新的有机锡配合物。经元素分析,IR、1H NMR、13CNMR和TG-DSC测定,确认配合物为有机锡与席夫碱的121加成物,配体以酚羟基氧原子和锡原子配位。  相似文献   

6.
由β-烷氧羰乙基三氯化锡与水杨醛缩苯胺类Schif碱反应,合成了13种新的有机锡-Schif碱配合物。经元素分析、IR、NMR和TG-DSC测定,对其结构进行了表征,配合物是通过酚羟基氧原子和锡原子的配键生成的。摩尔电导率测定结果表明,配合物均为非电解质。  相似文献   

7.
合成了天冬酰胺缩2,4-二羟基苯甲醛Schiff碱及其La、Nd、Er、Dy四种稀土配合物,用元素分析、红外光谱、紫外光谱、摩尔电导率等手段进行了结构分析。采用EPR技术对所合成Schiff碱及其配合物的抗超氧阴离子自由基(O  相似文献   

8.
用三苯基氢化锡,三对甲苯基氢化锡作为锡氢化试剂与9-乙炔基-9-芴醇进行反应,合成了2个有机锡化合物:[Z]-2-(三苯基锡基)-1-(9-芴醇)乙烯(1)和[Z]-2-(三对甲苯基锡基)-1-(9-芴醇)乙烯(2)。化合物1和2分别与ICl,Br~2,I~2反应,得到6个有机锡一卤化物,6个有机锡二卤化物和2个有机锡混合卤化物(3-16)。有机锡一碘化物7,13和有机锡二碘化物8,14与KOH乙醇溶液反应,分别得到相应的有机锡氢氧化物17,18和有机锡氧化物19,20。有机锡二碘化物8,14分别与含氮双齿配体1,10-邻菲罗啉(Phen),2,2'-联吡啶(Bipy),8-羟基喹啉(Oxin)反应,得到6个相应的配合物21-26。26个新化合物通过元素分析,锡含量测定,IR,^1HNMR测定对其结构进行了表征。同时测定了化合物2的晶体结构,晶体属单斜晶系,空间群P2~1/c。化合物2是以Sn原子为中心扭曲的四面体构型。  相似文献   

9.
合成了天冬酰胺缩 2 ,4 二羟基苯甲醛Schiff碱及其La、Nd、Er、Dy四种稀土配合物 ,用元素分析、红外光谱、紫外光谱、摩尔电导率等手段进行了结构分析。采用EPR技术对所合成Schiff碱及其配合物的抗超氧阴离子自由基 (O-2 ·)性能进行了探讨 ,结果表明 ,所合成的化合物具有显著的清除O-2 ·的功能 ,而配合物对O-2 ·的清除率高于Schiff碱配体。  相似文献   

10.
一维链状二(3-氟苄基)锡二吡啶羧酸配合物的合成、结构及反应机理;有机锡配合物;吡啶甲酸;合成;晶体结构;生物活性;反应机理  相似文献   

11.
The new diphenolato complexes [{Mo(NO){HB(dmpz)3}Cl}2Q] where dmpz = 3,5-dimethylpyrazolyl and Q = OC6H4(C6H4O (n = 1 or 2), OC6H4CR=CRC6H4O (R = H or Et), and OC6H4CH=CHC6H4CH=CHC6H4O have been prepared and their electrochemical properties (cyclic and differential pulse voltammetry) compared with previously reported analogues where Q = OC6H4O, OC6H4EC6H4O (E = SO2, CO and S), OC6H4 (CO)C6H4 C6H4(CO)C6H4O and 1,5- and 2,7-O2C10H6. The electrochemical interaction between the redox centres in the new complexes is very weak, in contrast to that in the 1,4-benzenediolato and naphthalendiolato species. The EPR spectra of the reduced mixed-valence species [{Mo(NO){HB(dmpz)3}Cl}2Q] where Q = 1,3- and 1,4-OC6H4O and OC6H4SC6H4O shows that they are valence-trapped at room temperature, whereas those of the dianions [{Mo(NO){HB(dmpz)3}Cl}2Q]2− where Q = 1,4-OC6H4O, OC6H4EC6H4O (E = CO or S) and OC6H4CH=CHC6H4CH=CHC6H4O shows that the unpaired spins on each molybdenum centre are strongly correlated (J, the spin exchange integral AMo, the metal-hyperfine coupling constant). The electrochemical properties and the comproportionation constants for the reaction [{Mo(NO){HB(dmpz)3} Cl}2Q] + [{Mo(NO){HB(dmpz)3}Cl}O]2]2−2[{Mo(NO) {HB(dmpz)3}Cl}2Q] where Q = diphenolato bridge, are compared with related compounds containing benzenediamido and dianilido bridges.  相似文献   

12.
The reactions of RNHSi(Me)2Cl (1, R=t-Bu; 2, R=2,6-(Me2CH)2C6H3) with the carborane ligands, nido-1-Na(C4H8O)-2,3-(SiMe3)2-2,3-C2B4H5 (3) and Li[closo-1-R′-1,2-C2B10H10] (4), produced two kinds of neutral ligand precursors, nido-5-[Si(Me)2N(H)R]-2,3-(SiMe3)2-2,3-C2B4H5, (5, R=t-Bu) and closo-1-R′-2-[Si(Me)2N(H)R]-1,2-C2B10H10 (6, R=t-Bu, R′=Ph; 7, R=2,6-(Me2CH)2C6H3, R′=H), in 85, 92, and 95% yields, respectively. Treatment of closo-2-[Si(Me)2NH(2,6-(Me2CH)2C6H3)]-1,2-C2B10H11 (7) with three equivalents of freshly cut sodium metal in the presence of naphthalene produced the corresponding cage-opened sodium salt of the “carbons apart” carborane trianion, [nido-3-{Si(Me)2N(2,6-(Me2CH)2C6H3)}-1,3-C2B10H11]3− (8) in almost quantitative yield. The reaction of the trianion, 8, with anhydrous MCl4 (M=Ti and Zr) in 1:1 molar ratio in dry tetrahydrofuran (THF) at −78 °C, resulted in the formation of the corresponding half-sandwich neutral d0-metallacarborane, closo-1-M[(Cl)(THF)n]-2-[1′-η1σ-N(2,6-(Me2CH)2C6H3)(Me)2Si]-2,4-η6-C2B10H11 (M=Ti (9), n=0; M=Zr (10), n=1) in 47 and 36% yields, respectively. All compounds were characterized by elemental analysis, 1H-, 11B-, and 13C-NMR spectra and IR spectra. The carborane ligand, 7, was also characterized by single crystal X-ray diffraction. Compound 7 crystallizes in the monoclinic space group P21/c with a=8.2357(19) Å, b=28.686(7) Å, c=9.921(2) Å; β=93.482(4)°; V=2339.5(9) Å3, and Z=4. The final refinements of 7 converged at R=0.0736; wR=0.1494; GOF=1.372 for observed reflections.  相似文献   

13.
Liquid crystalline 4-XC6H4N=NC6H4X-4′ [X = C4H9 (1a), C1OH21 (1b), OC4H9 (1c), OC8H17(1d)] can be easily prepared in high yields from the corresponding anilines. In order to study the influence of metals on the thermal properties of these materials, we have obtained adducts [AuCl 3(4-C4H9OC6H4N=NC6H4OC4H9-4′)] (2) and [Ag(OC1O3)L2] [L = 4-XC6H4N=NC6H4X-4′; X = OC4H, (3a), OC8H17 (3b)]. The silver adducts show themotropic behaviour. Mercuriation of dialkylazobenzenes 1a-b takes place with [Hg(OAc)2] and LiCl to give [Hg(R)Cl] [R = C6H3(N=NC6H4X-4′)-2, X-5; X = C4H9 (bpap) (4a), C10H21 (dpap) (4b)] while dialkoxyazobenzenes 1c–d require [Hg (OOCCF3)2] to obtain [Hg(R)Cl] [R = C6H3(N---NC6H4X-4′)-2, X-5; X = OC4H9 (bxpap) (4c), OC 8H17 (4d)]. 4a-c react with NaI to give [HgR2] [R= bpap (5a), dpap (5b), bxpap (5c), oxpap (5d)l. Both chloroaryl-, 4a and 4c, and diaryl-mercurials, 5a and 5c, act readily as transmetailating agents towards [Me4N] [AuCl4] in the presence of [Me4N]Cl to give [Au(η2-R)Cl2] [R = bpap (6a), bxpap (6b)]. After reaction of [AuCl 3(tht)] (tht = tetrahydrothiophene) with [Me4N]Cl and 4b (1:2:1), [Me4N][Au(dpap)Cl3] (7) can be isolated. C---H activati bxpap (8b)]. None of the complexes 4–8 shows mesomorphic behaviour.  相似文献   

14.
Reactions of [(η6-arene)RuCl2]2 (1) (η6-arene=p-cymene (1a), 1,3,5-Me3C6H3 (1b), 1,2,3-Me3C6H3 (1c) 1,2,3,4-Me4C6H2(1d), 1,2,3,5-Me4C6H2 (1e) and C6Me6 (1f)) or [Cp*MCl2]2 (M=Rh (2), Ir (3); Cp*=C5Me5) with 4-isocyanoazobenzene (RNC) and 4,4′-diisocyanoazobenzene (CN–R–NC) gave mononuclear and dinuclear complexes, [(η6-arene)Ru(CNC6H4N=NC6H5)Cl2] (4a–f), [Cp*M(CNC6H4N=NC6H5)Cl2] (5: M=Rh; 6: M=Ir), [{(η6-arene)RuCl2}2{μ-CNC6H4N=NC6H4NC}] (8a–f) and [(Cp*MCl2)2(μ-CNC6H4N=NC6H4NC)}] (9: M=Rh; 10: M=Ir), respectively. It was confirmed by X-ray analyses of 4a and 5 that these complexes have trans-forms for the ---N=N--- moieties. Reaction of [Cp*Rh(dppf)(MeCN)](PF6)2 (dppf=1,1′-bis (diphenylphosphino)ferrocene) with 4-isocyanoazobenzene gave [Cp*Rh(dppf)(CNC6H4N=NC6H5)](PF6)2 (7), confirmed by X-ray analysis. Complex 8b reacted with Ag(CF3SO3), giving a rectangular tetranuclear complex 11b, [{(η6-1,3,5-Me3C6H3)Ru(μ-Cl}4(μ-CNC6H4N=NC6H4NC)2](CF3SO3)4 bridged by four Cl atoms and two μ-diisocyanoazobenzene ligands. Photochemical reactions of the ruthenium complexes (4 and 8) led to the decomposition of the complexes, whereas those of 5, 7, 9 and 10 underwent a trans-to-cis isomerization. In the electrochemical reactions the reductive waves about −1.50 V for 4 and −1.44 V for 8 are due to the reduction of azo group, [---N=N---]→[---N=N---]2−. The irreversible oxidative waves at ca. 0.87 V for the 4 and at ca. 0.85 V for 8 came from the oxidation of Ru(II)→Ru(III).  相似文献   

15.
Oxidative addition of ethyl iodide to PdMe2(2,2′-bipyridyl) in (CD3)2CO gives the unstable “PdIMe2Et(bpy)”, which undergoes reductive elimination to form PdIR(bpy) (R = Me, Et), ethane, and propane. Ethene and palladium metal are also formed, and are attributed to decomposition of PdIEt(bpy) via β-elimination. Similar results are obtained with n-propyl iodide, although a palladium(IV) intermediate was not detected, but CH2=CHCH2X (X = Br, I) and PhCH=CHCH2Br give isolable complexes fac-PdXMe2(CH2CH=CHR)(L2) (R = H, Ph; L2 = bpy, phen). The propenyl complexes decompose at ambient temperature to form ethane, a trace of PdXMe(L2), and mixtures of [Pd(η3-C3H5)(L2)]X and [Pd(η3-C3H5)(L2)]-[Pd(η3-C3H5)X2]; for fac-PdBrMe2(CH2CH=CH2)(bpy) the major palladium(II) product is [Pd(η3-C3H5)(bpy)]Br.  相似文献   

16.
The reactions of HL 1 [where HL is 1N-(2-pyridyl-2-methyl)-2-arylazoaniline and is formulated as ArN = NC6H4N(H)(CH2C5H4N); Ar = C6H5 (for HL1) or p-MeC6H4 (for HL2) or p-ClC6H4 (for HL3)] with K2PtCl4 and Co(ClO4)3 · 6H2O afforded the (L)PtCl and [(L)2Co]ClO4 complexes, respectively. The HL ligands bind the platinum(II) and cobalt(III) centres in a tridentate (N,N,N) fashion, forming new diazoketiminato chelates upon dissociating the amino proton. The X-ray structures of (L3)PtCl and [(L3)2Co]ClO4 were determined. Redox properties of the new complexes have been examined.  相似文献   

17.
Two ligands [ortho-C6H4NR2(CH2NH)]2CH2CH2(3: R=Me; 4: R=EO were prepared by the reduction of preligands [ortho-C6H4NR2(CH=N)]zCH2CH2(1: R=Me; 2: R=Et). These ligands reacted with AIMe3 to afford the corresponding dinuclear aluminum complexes {A1Me2[ortho-C6H4NR2(CH2N)]}2CHzCH2(5: R=Me; 6: R=Et). All the compounds were characterized by 1H and UC nuclear magnetic resonance(NMR) spectroscopies and elemental analyses. The catalytic properties of the aluminum complexes towards the ring-opening polymerization of lactones were investi- gated in the presence of benzvl alcohol. All the oolvmerization reactions were proceeded in a controlled manner.  相似文献   

18.
The hydroboration of allyl sulfonamides (4-H3CC6H4SO2NRCH2CH=CH2: R=H, 1; Ph, 2; Bz, 3) with catecholborane (HBcat) using different rhodium catalysts has been examined using multinuclear NMR spectroscopy. Reactions give complex product distributions, regardless of the choice of catalyst, arising from a competing isomerization reaction. This isomerization reaction can be used with N-substituted allyl sulfonamides 2 and 3 to give the corresponding enamines (4-H3CC6H4SO2CH=CH2CH3), which in turn react with HBcat to give regioselective formation of one isomer (4-H3CC6H4SO2NRCH2CH2(Bcat)CH3).  相似文献   

19.
Reaction of R---N=C=N---R (R=p-Me-C6H4) and R---P==C=P---R (R=2,4,6-tBu3C6H2) with the di-iron aminocarbene complex [Fe2(CO)7{1μ-C(Ph)C(NEt2)}] (1c) gave corresponding complexes [Fe2(CO)6{C(Ph)C(NEt2)C(NC6H4Me)N (C6H4Me)}] (2) and [Fe2(CO)6{C(Ph)C(NEt2)C(PC6H2tBu3)P(C6H2tBu3)}] (4), resulting from a coupling reaction with carbon-carbon bond formation. [Fe2(CO)5(CNC6H4Me){C(Ph)C(NEt2)N(C6H4Me)}], complex 3, obtained in the reaction with R---N=C=N---R, resulted from C=N bond rupture insertion of a nitrene fragment into the Fe=C bond. Complexes 2–4 were characterized by X-ray diffraction. The different geornetries of complexes 2 and 4 are discussed. The formation of these complexes may be explained by cycloaddition on the Fe =C metal-carbene bond.  相似文献   

20.
The siloxyanilines o-Me3SiOC6H4NH2 (1) and p-RMe2SiOC6H4NH2 (R=H (2); R=Me (3)), and their N-silylated derivatives p-Me3SiOC6H4NHSiMe3 (4) and p-Me3SiOC6H4N(SiMe3)2 (5) have been prepared from ortho- or para-aminophenol and used in the synthesis of imido complexes. Thus, binuclear [{Ti(η5-C5H5)Cl}{μ-NC6H4(p-OSiMe3)}]2 (6) and mononuclear [TiCl2{NC6H4(p-OSiMe3)}(py)3] (7) imido complexes have been obtained from the reaction of 3 and [Ti(η5-C5H5)Cl3] or [TiCl2(NtBu)(py)3], respectively. In contrast, the reaction of 1 with TiCl4 and tBupy affords the titanocycle [TiCl2{OC6H4(o-NH)---N,O}(tBupy)2] (8). Compound 5 has also been used to prepare the niobium imide complex [NbCl3{NC6H4(p-OSiMe3)}(MeCN)2] (9), by its reaction with NbCl5 in CH3CN. These findings have been applied to the synthesis of polynuclear systems. Thus, chlorocarbosilane Si[CH2CH2CH2Si(Me)2Cl]4 (CS–Cl) has been functionalized with the ortho- and para-aminophenoxy groups to give 10 and 11, respectively. The use of 11 has allowed the formation of the tetranuclear compound 12. Attempts to synthesize terminal imido titanium complexes from 10 and TiCl4 in the presence of tBupy and Et3N, give complex 8 and carbosilane CS–Cl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号