共查询到20条相似文献,搜索用时 0 毫秒
1.
Cristina Gonçalves MagalhãesKátia Linces Alves Lelis Clélia Aparecida RochaJosé Bento Borba da Silva 《Analytica chimica acta》2002,464(2):323-330
Ruthenium (Ru), thermally deposited on a integrated platform graphite furnace, was investigated as a permanent modifier for the determination of Aluminum (Al) in blood serum and urine by electrothermal atomic absorption spectrometry (ETAAS). The platform was treated with 500 μg of Ru as previously described. The pyrolysis and atomization temperatures for each material were of 1300 and 2300 °C, for serum sample and of 1000 and 2400 °C, for urine. The characteristic mass were of 31 and 33 pg for Al in serum sample and urine, respectively (recommended of 31 pg for Al in nitric acid 0.2% (v/v)). For this reason, the calibration was made with aqueous solutions for both the samples. Calibration curves presented r of 0.99145 and 0.99991 for serum and urine, respectively. With the optimized temperatures, being analyzed eight spiked blood serum samples, the recovery was between 95.90 and 113.50%. Two certified urines samples were analyzed with good agreement between experimental and reference values. In both the samples the R.S.D. were <5% (n=3). The detection limit (k=3, n=10) was of 0.40 μg of Al per liter for both the samples. The absorption pulses obtained were symmetrical, with very low background and without interferences. The life time of the tube-platform was higher than 600 cycles of atomizations for both the urine and serum samples. 相似文献
2.
Single noble metal permanent modifiers such as, Rh, Ir, and Ru, as well as mixed tungsten plus noble metal (W-Rh, W-Ru, W-Ir) permanent modifiers thermally deposited on the integrated platform of transversally heated graphite atomizer were employed for the determination of arsenic in sludges, soils, sediments, coals, ashes and waters by electrothermal atomic absorption spectrometry. Microwave digests of solid samples and water samples were employed for obtaining the analytical characteristics of the methods with different permanent modifiers. The performance of the modifiers for arsenic determination in the real samples depended strongly on the type of permanent modifier chosen. The single noble metal (Rh, Ir and Ru) permanent modifiers were suitable for the analyte determinations in simpler matrices such as waters (recoveries of certified values 95-105%), but the analyte recoveries of certified values in sludges, soils, sediments, coals, and ashes were always lower than 90%. On the other hand, for the determination of arsenic, using W-Rh, W-Ru, and W-Ir permanent modifiers presented recoveries of certified values within 95-105% for all the samples. Long-term stability curves obtained for the determination of arsenic in environmental samples with different permanent modifiers (Rh, Ir, Ru, W-Rh, W-Ir, W-Ru) showed that the improvement in the tube lifetime depends on the tungsten deposit onto the platform. The tungsten plus noble metal permanent modifier presents a tube lifetime of at least 35% longer when compared with single permanent modifier. The results for the determination of As employing different permanent modifiers in the samples were in agreement with the certified reference materials, since no statistical differences were found after applying the paired t-test at the 95% confidence level. 相似文献
3.
Ryszard Dobrowolski Agnieszka AdamczykMagdalena Otto Joanna Dobrzyńska 《Spectrochimica Acta Part B: Atomic Spectroscopy》2011,66(7):493-499
For comparison of action of mixed permanent modifiers Ir/Nb and Ir/W, the influence of the amounts of modifier components was studied and the atomic absorption pyrolysis and atomization curves were determined with different modifiers. The optimum amounts of modifier components were 30 μg Ir and 40 μg of Nb that were deposited onto the L'vov platform in advance to analytical measurements. The long-term performance of the Ir and Nb permanent modifiers was derived from the investigations by scanning electron microscopy and energy dispersive X-ray spectrometry. The soil and sediment slurries were prepared in 4% hydrofluoric acid and 6% suspension of polytetrafluoroethylene in order to remove the high concentration of silica during the pyrolysis step of 900 °C. The calibration was made by using aqueous standards. The analysis of certified reference materials confirmed the accuracy and reliability of the proposed analytical approach. The precision of Sb determination was characterized with less than 6% RSD. 相似文献
4.
C.V.S. Ieggli D. Bohrer S. Noremberg P.C. do Nascimento L.M. de Carvalho S.L. Vieira R.N. Reis 《Spectrochimica Acta Part B: Atomic Spectroscopy》2009
An oil-in-water formulation has been optimized to determine trace levels of selenium in whole hen eggs by graphite furnace atomic absorption spectrometry. This method is simpler and requires fewer reagents when compared with other sample pre-treatment procedures. Graphite furnace atomic absorption spectrometric (GF AAS) measurement was carried out using standard addition calibration and Pd as a modifier. The precision, expressed as relative standard deviation, was better than 5% and the limit of detection was 1 µg L− 1. The validation of the method was performed against a standard reference material Whole Egg Powder (RM 8415), and the measured Se corresponded to 95.2% of the certified value. The method was used for the determination of the Se level in eggs from hens treated with Se dietary supplements. Inorganic and organic Se sources were added to hen feed. The Se content of eggs was higher when hens were fed with organic Se compared to the other treatments. The proposed method, including sample emulsification for subsequent Se determination by GF AAS has proved to be sensitive, reproducible, simple and economical. 相似文献
5.
The technique of coupled in situ electrodeposition–electrothermal atomic absorption spectrometry (ED–ETAAS) is applied to the analytes Bi, Pb, Ni and Cu. Bi, Pb, Ni and Cu are deposited quantitatively from their EDTA complexes at Ecell=1.75, 2.0, 3.0 and 2.5 V, respectively (Ecell=Eanode−Ecathode+iR). By varying the cell potential, selective reduction of free metal ions could be achieved in the presence of the EDTA complexes. For Bi3+ and Pb2+ this utilised the voltage windows Ecell=0.6–1.0 and 1.8–2.0 V, respectively. For Ni, deposition at Ecell=1.7–2.0 V achieved substantial, but not complete, differentiation between Ni2+ (ca. 90–100% deposition) and Ni(EDTA)2− (ca. 12–20% deposition). An adequate voltage window was not obtained for Cu. The ability of ED–ETAAS to differentiate between electrochemically labile and inert species was demonstrated by application of both ED–ETAAS and anodic stripping voltammetry to the time-dependent speciation of Pb in freshly mixed Pb2+–NaCl media. Application to natural water samples is complicated by adsorption of natural organic matter to the graphite cathode. 相似文献
6.
Vereda Alonso E Siles Cordero MT García de Torres A Cano Pavón JM 《Analytical and bioanalytical chemistry》2006,385(7):1178-1185
In this work, a new chelating resin [1,5-bis (2-pyridyl)-3-sulphophenyl methylene] thiocarbonohydrazide immobilised on aminopropyl-controlled pore glass (550 A; PSTH-cpg) was synthesised and packed in a microcolumn which replaced the sample tip of the autosampler arm. The system was applied to the preconcentration of lead. When microliters of 10% HNO3, which acts as elution agent, pass through the microcolumn, the preconcentrated Pb(II) is eluted and directly deposited in a tungsten-rhodium coated graphite tube. With the use of the separation and preconcentration step and the permanent modifiers, the analytical characteristics of the technique were improved. The proposed method has a linear calibration range from 0.012 to 10 ng ml(-1) of lead. At a sample frequency of 36 h(-1) with a 90 s preconcentration time, the enrichment factor was 20.5, the detection and determination limits were 0.012 and 0.14 ng ml(-1), respectively and the precision, expressed as relative standard deviation, was 3.2% (at 1 ng ml(-1)). Results from the determination of Pb in biological certified reference materials were in agreement with the certified values. Seawaters and other biological samples were analysed too. 相似文献
7.
Jin-feng Peng Rui LiuJing-fu Liu Bin HeXia-lin Hu Gui-bin Jiang 《Spectrochimica Acta Part B: Atomic Spectroscopy》2007
A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L− 1) and a relative standard deviation (2.5% at 50 ng L− 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4–264.8 ng L− 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples. 相似文献
8.
Investigation of thallium hydride generation using in situ trapping in graphite tube by atomic absorption spectrometry 总被引:1,自引:0,他引:1
Thallium hydride was generated from aqueous solutions by merging sample and sodium tetrahydroborate reductant in a batch system. In situ preconcentration of volatile thallium hydride in a preheated graphite furnace coated with palladium, which was used as both the collection medium and atomizer, greatly improved the sensitivity for the determination of thallium by hydride generation atomic absorption spectrometry. The presence of tellurium can increase the generation efficiency of thallium hydride. The operating conditions were optimized. The calibration graph is linear up to 100 ng and the characteristic mass for thallium was 0.92 ng which is seventeen times lower than that obtained with the heated quartz tube atomizer. 相似文献
9.
Maria Bertília Oss Giacomelli Jos Bento Borba da Silva Tatiana Dillenburg Saint'Pierre Adilson Jos Curtius 《Microchemical Journal》2004,77(2):151-156
The most severe interferences in atomic absorption spectrometry are caused by the presence of anions when they are in different concentrations in the samples and in the calibration solutions. The analyte addition technique or matrix matching calibration can be employed to minimize or compensate the non-spectral interferences, but they are time consuming or difficult to be carried out. The use of chemical modifiers usually allows higher pyrolysis temperatures and consequently the removal of components of the sample matrix, equalizing the analyte signal in the sample and in the calibration solution. In this work, a mixture of Ir and Rh is proposed as permanent modifier to determine As, Cd and Pb in diluted hydrochloric, sulfuric and phosphoric acids and in ethanol and methanol by electrothermal atomic absorption spectrometry (ET AAS) with calibration against 1% v/v nitric acid aqueous solutions. The performance of the proposed permanent modifier was compared to that of Pd plus Mg nitrates in solution. Better recoveries, low background levels and faster analysis were obtained with the permanent modifier. The permanent modifier was also successfully employed for the determination of As, Cd and Pb in different concentrations of sulfuric and hydrochloric acids. For the phosphoric acid, the proposed modifier was only efficient for acid concentrations up to 2% v/v for As and up to 5% v/v for Cd and Pb. The precision, expressed as the relative standard deviation (n=3), was lower than 10%, for all samples, including ethanol and methanol. 相似文献
10.
Vera I. Slaveykova Leonardo Lampugnani Dimiter L. Tsalev L. Sabbatini 《Spectrochimica Acta Part B: Atomic Spectroscopy》1997,52(14):329-2126
In order to better characterise a permanent modifier based on iridium deposited on zirconium or tungsten treated platforms of transversely heated graphite atomizer, and to gain additional information about its chemical behavior directed to an eventual further optimization, a series of experiments were carried out, both by surface techniques such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS or ESCA) and X-ray fluorescence (XRF) and by electrothermal atomic absorption spectrometry on the iridium release from unmodified and various other modified pyrolytic graphite platforms. Special attention was paid to the influence of the amount of iridium, zirconium carbide coating of the platform surface and the presence of citric acid on the iridium vaporization during pyrolysis and atomization. The processes of iridium losses during pyrolysis and atomization and peak maximum alignment depend on the amount of the iridium deposited on the pyrolytic graphite coated platforms in the presence of nitric acid. A fractional order of release which suggests an atom vaporization from the surface or edges of the iridium islands was estimated. In the presence of citric acid, mass independence and zero order of the atom release were found. The zirconium treatment of the platform results in change of the spatial distribution of iridium and hence its vaporization. Vaporization temperatures as high as 2100°C, and first order of the process of atom generation were obtained. While it was possible to study the iridium atomization from uncoated and zirconium coated surfaces, evidencing a different order for the release process, the same was not possible for the tungsten coated platforms due to an ‘overstabilization’ that brought the iridium atomization temperature out of the working range of the instrument used. The different chemical behavior of tungsten and zirconium was also confirmed by XPS investigations. With tungsten, evidence of both W---C and W---O bonding was found, while zirconium on the contrary shows only Zr---O bonding and no evidence of carbide bonding. The SEM revealed a highly dispersed distribution of spot-like features whose smallest average diameter was of the order of 0.1 μm. The XRF asserted the confinement of iridium in these features and a strict association with zirconium in the case of zirconium treated surfaces. It is worth mentioning that such structure was preserved also after 400 thermal cycles simulating an atomization step at 1900°C despite a quite evident deterioration of the graphite surface, thus confirming the excellent durability of this modifier. 相似文献
11.
In the present paper, a system for on-line preconcentration and determination of copper by flame atomic absorption spectrometry (FAAS) was developed. It was based on solid phase extraction of copper(II) ions on a minicolumn of Amberlite XAD-2 loaded with 2-(2-thiazolylazo)-5-dimethylaminophenol (TAM). The optimisation process was carried out using Doehlert designs. Four variables (sampling flow rate, SR; elution flow rate, buffer concentration, BC; and pH) were regarded as factors in the optimisation. The parameter “sensitivity efficiency (SE)” proposed in this paper, and defined as the analytical signal obtained for an on-line enrichment system for a preconcentration time of 1 min was used as analytical response in the optimisation process. Using the established experimental conditions, the proposed on-line system allowed determination of copper with detection limit (3σ/S) of 0.23 μg l−1, and a precision (repeatability), calculated as relative standard deviation (R.S.D.) of 3.9 and 3.7% for copper concentration of 5.00 and 20.00 μg l−1, respectively. The preconcentration factor obtained is 62. The recovery achieved for copper determination in presence of several cations demonstrated that this has enough selectivity for analysis of food samples. The robustness of the proposed system was also evaluated. The accuracy was confirmed by analysis of the following certified reference materials (CRMs): Rice flour NIES 10a, Spinach leaves NIST 1570a, Apples leaves NIST 1515 and Orchard leaves NBS 1571. This procedure was applied for copper determination in natural food samples. 相似文献
12.
A flow injection (FI) system was used to develop an efficient on-line sorbent extraction preconcentration system for palladium by graphite furnace atomic absorption spectrometry (GFAAS). The investigated metal was preconcentrated on a microcolumn packed with 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel (DPTH-gel). The palladium is eluted with 40 μl of HCl 4 M and directly introduced into the graphite furnace. The detection limit for palladium under the optimum conditions was 0.4 ng ml−1. This procedure was employed to determine palladium in different samples. 相似文献
13.
The present work reports the development of a methodology for the direct determination of lead in high saline waters derived from petroleum exploration employing electrothermal atomic absorption spectrometry with permanent Ir-W and HF as modifiers. These waters, so-called produced waters, have complex composition containing several types of organic and inorganic substances. In order to attain best conditions (highest analytical signal besides lowest background) for the methodology studies about the effect of several variables and the convenient calibration strategy were performed. Also, the efficiency of other modification approaches was evaluated. At best conditions, pyrolysis and atomization temperature were 800 and 2200 °C, respectively, when the modifiers cited above were utilized. Obtained results indicate that, in this kind of sample, lead can be determined by standard addition method or employing external calibration with standard solutions prepared in 0.8 mol l−1 NaCl medium. In order to evaluate the accuracy of the procedure, a recovery test was performed with six spiked samples of produced waters. The detection limit, quantification limit and the relative standard deviation in 0.8 mol l−1 NaCl were also calculated and the values are 1.5 μg l−1, 5.0 μg l−1 and 5.0% (at 10 μg l−1 level), respectively. 相似文献
14.
A procedure for the determination of cadmium, chromium, and lead in marine sediment slurries by electrothermal atomic absorption spectrometry is proposed. Slurry was prepared by mixing 10 mg of ground sample with particle size smaller than 50 μm completed to the weight of 1.0 g with a 3% nitric acid and 10% hydrogen peroxide solution. The slurry was maintained homogeneous with an aquarium air pump. For cadmium, the best results were obtained using iridium permanent with optimum pyrolysis and atomization temperatures of 400 and 1300 °C, respectively, a characteristic mass, mo (1% absorption), of 2.3 pg (recommended 1 pg). Without modifier use, zirconium, ruthenium, and rhodium mo were 3.4, 4.1, 4.6, and 4.8 pg, respectively. For chromium, the most sensitive condition was obtained with zirconium permanent with optimum pyrolysis and atomization temperatures of 1500 and 2500 °C, mo of 6.6 pg (recommended 5.5 pg); and without modifier use, rhodium, iridium, and ruthenium mo were 5.3, 8.8, 8.8, and 8.9 pg, respectively. For lead, the best modifier was also zirconium, mo of 8.3 pg for the optimum pyrolysis and atomization temperatures of 600 and 1400 °C, respectively, (recommended mo of 9.0 pg). For iridium, ruthenium, without modifier, and rhodium, mo were 14.7, 15.5, 16.5, and 16.5 pg, respectively. For all the modifiers selected in each case, the peaks were symmetrical with r2 higher than 0.99. Being analyzed (n = 10), two marine sediment reference materials (PACS-2 and MESS-2 from NRCC), the determined values, μg l−1, and certified values in brackets, were 2.17 ± 0.05 (2.11 ± 0.15) and 0.25 ± 0.03 (0.24 ± 0.01) for cadmium in PACS-2 and MESS-2, respectively. For chromium in PACS-2 and MESS-2 the values were 94.7 ± 5.6 (90.7 ± 4.6) and 102.3 ± 10.7 (106 ± 8), respectively. Finally, for lead in PACS-2 and MESS-2, the results obtained were 184 ± 7 (183 ± 8) and of 25.2 ± 0.40 (21.9 ± 1.2), respectively. For cadmium and lead in both samples and chromium in PACS-2, calibration was accomplished with aqueous calibration curves. For chromium in MESS-2, only with the standard addition technique results were in agreement with the certified ones. The limits of detection (k = 3, n = 10) obtained with the diluents were 0.1, 3.4, and 3.6 μg l−1 for cadmium, chromium, and lead, respectively. 相似文献
15.
Different analytical methods for the determination of lead in Orujo spirits by electrothermal atomic absorption spectrometry (ETAAS) were developed using permanent modifiers (W, Ir, Ru, W-Ir and W-Ru) thermally deposited on platforms inserted in pyrolitic graphite tubes and Pd-Mg(NO3)2 conventional modifier mixture. In all cases, the Pb determination was performed without any sample pretreatment or preconcentration steps. The comparison between the chemical modifiers employed has been made in terms of pyrolysis and atomization temperatures, characteristic masses, detection limits, and atomization and background signal shapes. The limits of detection obtained were 0.375, 0.387, 0.109, 0.251 and 0.267 ng mL−1 for W, Ir, Ru, W-Ir and W-Ru, respectively and 0.710 ng mL−1 for Pd-Mg(NO3)2. The characteristic masses were 14.1, 11.2, 5.6, 8.3 and 9.3 pg for W, Ir, Ru, W-Ir and W-Ru, respectively and 22.2 pg for Pd-Mg(NO3)2. For all the developed procedures using the different modification systems, the relative standard deviations (<10%) and the analytical recoveries (95-103%) were acceptable. The more suitable methods for Pb determination in distillate spirits were those using permanent modifiers in contrast with classical Pd-Mg(NO3)2. The best analytical performance was achieved for W, Ir and W-Ir methods, which were applied to lead determination in Orujo spirit samples from Galicia (NW Spain). The Pb concentrations found in the analyzed samples were comprised in the range (<LOD to 1.5 μg mL−1). 相似文献
16.
Şerife Saçmacı Serkan Şahan Mustafa Saçmacı Uğur Şahin Ahmet Ülgen Şenol Kartal 《International journal of environmental analytical chemistry》2013,93(12):1223-1235
A method was developed for the on-line determination of palladium in complex matrices with flame atomic absorption spectrometry (FAAS) using Amberlite XAD-16 resin functionalized with 2-[2-(5-thiol-1,3,4-thiadiazolyl)]-azonaphthol (TTAN) reagent. Optimum experimental conditions such as pH of sample, type of eluent, amount of resin, volumes of sample and eluent solution, flow rates of sample and eluent, and effect of interfering ions were established. A 0.1?mol?L?1 thiourea solution in 0.5?mol?L?1 HCl was used as the eluent and subsequently transportation the analyte ions into the nebulizer–burner system for atomization. The synthesized chelating resin material showed excellent chemical and mechanical resistance, fast adsorption kinetics permitting the use of high sample flow rates without significant losses of retention efficiency. The detection limit of the method was 1.5?µg?L?1 while the relative standard deviation (RSD%) was 2.4% at 0.1?mg?L?1 Pd(II) level. The developed method was successfully applied to the determination of palladium in the catalytic converter and water samples. 相似文献
17.
A time-based flow injection (FI) separation pre-concentration system coupled to an electrothermal atomic absorption spectrometer (graphite furnace) has been developed for the direct ultra-trace determination of selenite and selenate in drinking water. The pre-concentration of both forms of selenium is carried out onto a micro-column packed with an anionic resin (Dowex 1X8) that is placed in the robotic arm of the autosampling device. Selenite and selenate are sequentially eluted with HCl 0.1 M and HCl 4 M, respectively. The interference of large quantities of chloride during selenium atomisation is prevented by using iridium as a “permanent” chemical modifier. The features of the pre-concentration separation system for both species are: 53% efficiency of retention and an enhancement factor of 82 for a pre-concentration time of 180 s (sample flow rate=3 ml min−1) with HCl elution volumes of 100 μl. The detection limit (3 s) is 10 ng l−1 for the two species and the relative standard deviation (n=10) at the 200 ng l−1 level is 3.5% for selenite and 5.6% for selenate. The addition of selenite and selenate stock standard solutions to tap water samples yields a 97-103% recovery of both species. 相似文献
18.
Silk fibroin is a kind of polypeptide with functional amino acids in its structure. The electric charges in its molecular chains originating from the dissociation of acidic groups, i.e., hydroxyl, phenol and carboxyl, provide vast potentials for the retention of metal species of interest. In this study, the selective retention of Cu2+ with silk fibroin at pH 6.0 was investigated and a novel on-line procedure for separation/preconcentration of Cu2+ from complex sample matrices was thus developed by using a sequential injection system with an electrothermal atomic absorption spectrometry. A novel concept of enrichment index (EI), i.e., defined as enrichment factor (EF) obtained by consuming unity of sample volume (ml), was proposed for evaluating the enrichment efficiency of a flow-based preconcentration procedure. With a sampling volume of 900 μl, an EI of 30.3 (EF = 27.3) was achieved, which was much improved as compared to that of reported procedures. A detection limit of 8.0 ng l−1 was achieved within a linear range of 0.025-1.5 μg l−1 along with a precision of 2.2% R.S.D. at 0.5 μg l−1. The practical applicability of this procedure was validated by analyzing a certified reference material of riverine water (GBW08608) and a certified reference material of seawater (NASS-5) achieving satisfactory agreements between the certified and the obtained values. A spiking recovery was also performed by using a cave water sample. 相似文献
19.
A further study on a newly developed flow injection (FI) on-line multiplexed sorption preconcentration (MSP) using a knotted reactor coupled with flame atomic absorption spectrometry (FAAS) was carried out to demonstrate its applicability and limitation for trace element determination. For this purpose, Cr(VI), Cu(II), Ni(II) and Co(II) were selected as the analytes, and detailed comparison was made between the MSP-FAAS and conventional FI on-line sorption preconcentration FAAS in respect to retention efficiency and linear ranges of absorbance versus sample loading flow rate and total preconcentration time. Introduction of an air-flow for removal of the residual solution in the KR after each sub-injection in the MSP procedure played a decisive role in the improvement of retention efficiency. The linearity of absorbance versus sample loading flow rate or total preconcentration time was extended to a more degree for the metal ions with less stability of their PDC (pyrrolidine dithiocarbamate) complexes than those with more stable PDC complexes. It seems that the MSP procedure behaves advantages beyond the inflection points in the diagrams of absorbance versus total preconcentration time and sample loading flow rate obtained by conventional (a single continuous) preconcentration procedure. With a sample loading flow rate of 6.0 ml min−1 and a total preconcentration time of 180 s, the retention efficiencies were increased from 25, 46, 41 and 63% with a single continuous sorption preconcentration to 44, 78, 65 and 75% with a six sub-injection preconcentration procedure for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The detection limits were 0.40, 0.33, 0.31 and 0.26 μg l−1 for Cr(VI), Co(II), Ni(II), and Cu(II), respectively. The precision (R.S.D.) for eleven replicate determination of 2 μg l−1 Cr(VI), Co(II) and Ni(II), and 1 μg l−1 Cu(II), was 2.1, 4.1, 2.6 and 1.7%, respectively. 相似文献