首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we describe for the first time the use of astable multivibrator circuits for computer-less control of solenoid micropumps and application for analytical flow techniques. Triggering and powering were accomplished using the NE555 integrated circuit. The activation and deactivation time intervals were adjusted using 10-turn trimmer potentiometers. The potential and characteristics of the instrumentation were studied on a two-channel flow system injecting an indigo carmine indicator solution. Subsequently, a three-channel flow system was assembled and successfully applied to the determination of nitrite in well waters. One circuit was used to control the activation time intervals of three further circuits used for the control of the flow rates or pulsation of solenoid micropumps. These were used for driving carrier, reagent, and sample in an analytical flow system. In the present work, the utility of the circuits for the construction of simple multipumping flow systems was demonstrated. A main feature to be highlighted was the simplicity and very low costs of the controlling circuits, favouring economic and miniaturised flow analysers. Second, no expenses or knowledge are required for the usual software control of the solenoid micropumps. This allows working with every existing detector without considering any problems of software and control compatibility. Third, owing to these features, the proposed assembly is especially suited for simple monitoring analysers, sample provision from an environmental or industrial process, or chemical education.  相似文献   

2.
In this work, an automated multipumping pulsed flow system was implemented for the determination of phosphate in natural waters. The developed flow approach was based on the spectrophotometric determination of phosphate by using the vanadomolybdate reaction. The exploitation of a very simple manifold configuration relying on the utilization of just two active components, in this case two solenoid actuated micropumps that were accountable for sample and reagent insertion and commutation, reaction zone formation, and solutions propelling, provided a great operational and optimization simplicity, low reagent consumption, and waste minimization.

Linear calibration plots for phosphate concentrations of up to 20 mg L?1 (R2 = 0.999, n = 6) were obtained, with a detection limit of 0.2 mg L?1. The sampling rate was about 60 samples per hour. The system was applied to the monitoring of phosphate in local streams at specific sampling stations.  相似文献   

3.
The advantages of using membrane micropumps to introduce sample or standard solutions in flame atomic absorption spectrometry are discussed, using two entirely computer-controlled manifolds which allow a wide range of dispersion coefficients to be obtained. Coupling micropumps to the manifold facilitates calibration graphs to be obtained using a single standard solution. Other advantages include a handy on-line dilution stage for excessively concentrated samples as well as the possibility of obtaining pulsed absorbance-time profiles that once submitted to the Fourier transformation, provide amplitude-frequency plots representing an innovative, not yet fully exploited vision of atomic absorption analytical data.  相似文献   

4.
A multi-pumping flow system for the chemiluminometric determination of the hypoglycaemic drug metformin was implemented. The developed methodology was based on the metformin-induced inhibition (metformin acts as a Cu(II) scavenger) of the catalytic effect of Cu(II) ions on the chemiluminescent reaction between luminol and hydrogen peroxide. The flow manifold configuration was based on the utilisation of multiple solenoid-actuated micro-pumps that were simultaneously accountable for sample/reagent introduction and reaction zone formation/propulsion, thus resulting in a fully automated, simple and highly selective multi-pumping flow system. A versatile sample manipulation allowed the establishment of distinct sampling strategies with low reagent consumption. The characteristic pulsed flow ensured an effective sample/reagent mixing leading to a better and faster reaction zone homogenisation and thus improved analytical signals. Linear calibration plots were obtained for metformin hydrochloride concentrations ranging from 5 to 15 mg L–1 with a relative standard deviation lower than 2.0% (n=5). Detection limit was 0.94 mg L–1, and the sampling rate was about 95 determinations per hour. The developed methodology was applied to the analysis of pharmaceutical formulations and the obtained results were in agreement with those furnished by the reference method with relative percentage deviations of lower than 1.5%.  相似文献   

5.
微流体驱动与控制技术   总被引:2,自引:0,他引:2  
李清岭  陈令新 《化学进展》2008,20(9):1406-1415
在微流控系统所需的功能单元中,微流体驱动与控制操作单元尤为重要。微系统条件下,表面张力的影响变得十分明显,在工程意义上,常规的流体体积流动的驱动方法在微管道中往往效果不好甚至是不可行的。本文简要评述了用于微流体驱动的机械微型泵技术,基于电、光、磁等的非机械微型泵技术,以及微流体的高效混合控制等技术的研究现状,对微流体驱动与控制的未来作了展望。  相似文献   

6.
Several ultrasound-based platforms for DNA sample preparation were evaluated in terms of effective fragmentation of DNA (plasmid and genomic DNA)—ultrasonic probe, sonoreactor, ultrasonic bath and the newest Vialtweeter device. The sonoreactor showed the best efficiency of DNA fragmentation while simultaneously assuring no cross-contamination of samples, and was considered the best ultrasonic tool to achieve effective fragmentation of DNA at high-throughput and avoid sample overheating. Several operation variables were studied—ultrasonication time and amplitude, DNA concentration, sample volume and sample pre-treatment—that allowed optimisation of a sonoreactor-based strategy for effective DNA fragmentation. Optimal operating conditions to achieve DNA fragmentation were set to 100% ultrasonic amplitude, 100 μL sample volume, 8 min ultrasonic treatment (2 min/sample) for a DNA concentration of 100 μg mL−1. The proposed ultrasonication strategy can be easily implemented in any laboratory setup, providing fast, simple and reliable means for effective DNA sample preparation when fragmentation is critical for downstream molecular detection and diagnostics protocols.  相似文献   

7.
In order to make the lab-on-a-chip concept a reality, it is desirable to have an integrated component capable of pumping fluids through microchannels. We have developed novel, electrically actuated micropumps and have integrated them with microfluidic systems. These devices utilize the build-up of electrolysis gases to achieve pressure-driven pumping, only require small voltages (approximately 10 V), and have approximate dimensions of 5 cm x 3 cm x 2 cm. Furthermore, these micropumps are composed of relatively inexpensive materials, and the reversible sealability of their poly(dimethylsiloxane) body to different microfluidic arrays enables repeated uses of the same pump. Under an applied potential of 10 V, three different micropumps had average flow rates of 8-13 microL min(-1) for water being pumped through five different 2 cm-long, 5500 microm(2) cross-sectional-area channels in poly(methyl methacrylate), in approximate agreement with predicted pump rates. We have also evaluated pump operation at the lower applied potential of 8 V and observed an average flow rate of 6.1 microL min(-1) for a pump-channel system. The current micropump design is capable of sustaining pumping pressures in the range of 300 kPa. The various advantages of these micropumps make them well suited for use in lab-on-a-chip analysis techniques.  相似文献   

8.
A dynamic system for the continuous leaching of Cr(VI) from sediment and soil based on both microwave assistance and iterative change of the flow direction of the extractant through the sample cell has been developed. The microwave-assisted extractor has been coupled to a photometric detector through a flow injection interface in order to develop a fully automated method. The Cr(VI) extracted was monitored after derivatization with 1,5-diphenylcarbazide. Two approaches are proposed which differ in the inclusion of a preconcentration minicolumn packed with a strong anion exchange resin. A 0.04 M ammonium buffer solution was used as extractant and 0.2 g of sample—river sediment spiked with 50 and 5 μg g−1 for the method without preconcentration (method A) and with preconcentration (method B)—was subjected to 8-14 min of 300 W microwave-assisted extraction. The within-laboratory reproducibility and repeatability were 2.6 and 1.9 for method A, and 4.0 and 2.6 for method B. The proposed methods have been compared with the reference EPA method 3060/7196.  相似文献   

9.
Lima JL  Santos JL  Dias AC  Ribeiro MF  Zagatto EA 《Talanta》2004,64(5):1091-1098
Multi-pumping flow systems (MPFS) are one of the most recent developments in terms of the design, conception and implementation of continuous flow methodologies, for sample and reagent handling and for the automation of analytical procedures. Based on the utilisation of multiple solenoid micro-pumps they enable the configuring of fully automated and easily controlled and operated analytical systems since all the fundamental operations involved in carrying out a sample analysis, including sample insertion, reagent addition and signal measurement could be carried out by the same manifold component, reducing the number of system parts and minimising its control or the occurrence of mal-functions. On the other hand, micro-pumps actuation produce a pulsed flow characterised by a chaotic movement of the solutions, which contributes to a fast sample/reagent homogenisation with low axial dispersion yielding improved analytical signals. The combination of such advantageous features resulted in simple, compact, versatile, fast, low-cost analytical procedures, exhibiting low reagent and low sample consumption, reducing the production of undesirable wastes and minimising operator intervention.  相似文献   

10.
The achievement of a higher degree of integration of components--especially micropumps and power sources--is a challenge currently being pursued to obtain portable and totally autonomous microfluidic devices. This paper presents the integration of a micro direct methanol fuel cell (μDMFC) in a microfluidic platform as a smart solution to provide both electrical and pumping power to a Lab-on-a-Chip system. In this system the electric power produced by the fuel cell is available to enable most of the functionalites required by the microfluidic chip, while the generated CO(2) from the electrochemical reaction produces a pressure capable of pumping a liquid volume through a microchannel. The control of the fuel cell operating conditions allows regulation of the flow rate of a liquid sample through a microfluidic network. The relation between sample flow rate and the current generated by the fuel cell is practically linear, achieving values in the range of 4-18 μL min(-1) while having an available power between 1-4 mW. This permits adjusting the desired flow rate for a given application by controlling the fuel cell output conditions and foresees a fully autonomous analytical Lab-on-a-Chip in which the same device would provide the electrical power to a detection module and at the same time use the CO(2) pumping action to flow the required analytes through a particular microfluidic design.  相似文献   

11.
Fuentes HV  Woolley AT 《Lab on a chip》2007,7(11):1524-1531
Electrolysis-based micropumps integrated with microfluidic channels in micromachined glass substrates are presented. Photolithography combined with wet chemical etching and thermal bonding enabled the fabrication of multi-layer devices containing electrically actuated micropumps interfaced with sample and mobile phase reservoirs. A stationary phase was deposited on the microchannel walls by coating with 10% (w/w) chlorodimethyloctadecylsilane in toluene. Pressure-balanced injection was implemented by controlling the electrolysis time and voltage applied in the two independent micropumps. Current fluctuations in the micropumps due to the stochastic formation of bubbles on the electrode surfaces were determined to be the main cause of variation between separations. On-chip electrochemical pumping enabled the loading of pL samples with no dead volume between injection and separation. A mobile phase composed of 70% acetonitrile and 30% 50 mM acetate buffer (pH 5.45) was used for the chromatographic separation of three fluorescently labeled amino acids in <40 s with an efficiency of >3000 theoretical plates in a 2.5 cm-long channel. Our results demonstrate the potential of electrochemical micropumps integrated with microchannels to perform rapid chromatographic separations in a microfabricated platform. Importantly, these devices represent a significant step toward the development of miniaturized and fully integrated liquid chromatography systems.  相似文献   

12.
In this study, flow injection-cloud point extraction (FI-CPE) of iron and copper in food samples by flame atomic absorption spectrometric determination was described. Triton X-114 non-ionic surfactant and Eriochrome Cyanine R (ECR) have been used as an extraction medium and a chelating agent, respectively. The amounts of Triton X-114, ECR and the pH value necessary for extraction were carefully optimized. In addition, several parameters of the FI-CPE system, including sample loading rate, column dimension, type of packing material, eluent flow rate were investigated and analytical characteristics of the method were evaluated. Under optimum conditions, detection limits of 0.33 ng/mL and 0.57 ng/mL and quantification limits of 1.1 ng/mL and 1.9 ng/mL for iron and copper along with enrichment factors of 141 and 99 were obtained, respectively. The calibration was linear over the range 1.5-25 ng/mL and 1.0-35 ng/mL for iron and copper, respectively. The proposed CPE technique has been successfully applied for the determination of iron and copper ions in certified reference materials (NCS DC 73349—bush, branches and leaves; and TM-23.2—fortified water), water samples (mineral and sea water) and food samples (vegetables, bread and hazelnut) with high efficiency.  相似文献   

13.
A universal and easily ON–OFF time operated coulometric flow cell for generation of chemicals is proposed. The cell can be used for generation of reagents, titrants or standard solutions, and can be coupled to analytical equipments in combination with flow systems for generation of micro-quantity amounts of chemicals in a wide concentration range. Platinum wire electrodes and other common laboratory available materials were employed in the cell assembly. The application of the cell for analytical purposes was illustrated by employing it for generating triiodide ions as a carrier in a flow injection analysis system applied to the analysis of dipyrone in pharmaceuticals, and as a titrant in a flow-batch analysis system applied for analysis of ascorbic acid in natural orange juice samples. Preliminary studies demonstrate that such a flow cell is suitable to allow the use of unstable reagents in analytical chemistry, since they can be generated in a closed system and promptly used in subsequent reactions. In addition, it offers advantages of saving chemicals, time and specially the laborious calibrating standard solutions preparation task of routine laboratories. Taking in account its analytical performance, the proposed cell promises to be an important tool in analytical chemistry with a great competition potential as compared to the other ones proposed in the literature.  相似文献   

14.
A novel strategy for exploiting ion exchange in sequential injection systems is proposed. The procedure is based on the selection of a defined volume of a resin suspension, which is introduced and packed in the analytical path, establishing a resin mini-column in the system. The passage of a selected sample volume through the resin mini-column leads to the retention of the analyte, while the sample matrix is discarded. The analyte is eluted during the passage of the eluant/reagent by the packed beads, being the analytical signal monitored (absorbance) in the liquid phase. The beads are then aspirated back to the holding coil and directed to a recovery flask, linked at the selection valve; then the system is ready to begin a new cycle. With the proposed strategy, the main characteristics of the sequential injection system are kept as any new artifact is added to the manifold and system reconfiguration is not required. The feasibility of the approach is demonstrated by the phytic acid determination in food samples. For this specific application, AG1-X8 was selected as ion exchanger, and a solution containing Cl- and Fe(III)-salicylate complex was used as eluant and spectrophotometric reagent.  相似文献   

15.
Feng J  Yang XJ  Li XC  Yang H  Chen ZG 《Analytical sciences》2011,27(10):1057-1060
An automated fluid-transport device for a chip-based capillary electrophoresis system has been developed. The device mainly consists of six peristaltic micropumps, two vacuum micropumps, microvalves, multi-way joints, titanium tubes, and a macro-to-micro connector. Various solutions used for the cleaning and activation of chip channels, and electrophoresis separation, are allowed to automatically transport to chip reservoirs by the electric control module. The performance of the whole system was characterized by the analysis of fluorescein sodium using chip electrophoresis with LED-induced fluorescence detection. The peak-height variation (RSD) was 3.8% in six cycles of analyses. Additionally, compared with conventional manual operation, the developed device can spare 60% time for chip pretreatment. This microdevice offers high-efficiency pretreatment for microchips, thereby resulting in a remarkable improvement of analytical capacity for batch samples.  相似文献   

16.
A bead-injection system is proposed for total mercury determination in river-water samples. The procedure is based on the introduction of a defined quantity of a resin suspension in the flow system. The selected beads are packed inside of a flow cell and the formed resin mini-column constitutes the optical path. The sample volume is then selected, and its passage by the mini-column allows retention of the mercury ions on the surfaces of the beads. The introduction of a spectrophotometric reagent in the flow system leads to the formation of a colored Hg-dithizone complex on the surface of the bead, which is spectrophotometricaly monitored. The spent beads are directed to waste, allowing the system to become ready to process another sample. The proposed system handles about 20 measurements per hour, consuming 1000 microl of the sample, 1 mg of Chelex 100 resin and 1.25 microg of Dithizone per determination. When 1000 microl of the sample is injected, a linear analytical curve is obtained (A = 0.0052[Hg] + 0.1028, from 0 up to 30 microg l(-1), R2 = 0.995); the detection limit is estimated to be 0.9 microg l(-1). The results are precise, r.s.d. < 9%; spiked sample recoveries within 91.2 and 109% are found.  相似文献   

17.
Although there exist tremendous needs for on-chip biofluid delivery, research in this field has yielded limited numbers of devices for real-world applications. One challenge is the difficulty for micropumps to meet the requirements of being low cost to fabricate, easy to integrate and effective for intended applications at the same time. This research focuses on AC electrothermal (ACET) micropumps based on planar interdigitated electrodes, due to their practicality in fabrication and operation, and compatibility with biochemical fluids. Our prior work has optimized the design of electrode dimensions for a fixed microchannel design. This work finds that microchannel dimensions can also affect ACET micropumps significantly, with respect to flow rate and electric impedance loading. This work first considers the constraints arising from impedance loading by ACET micropumps on power supplies, then the investigation describes several key parameters (threshold height, saturation thickness), to arrive at an appropriate microchannel geometry for the effective delivery of biofluids. The optimized microchannel is expected to incorporate well into a multifunctional lab-chip system to transport biofluids efficiently.  相似文献   

18.
Only two computer-controlled microsolenoid devices, namely two micropumps or one micropump and one microvalve, are sufficient for the construction of on-line dilution modules useful in several flow analytical systems for the calibration using single standard. Three simple constructions of such modules were tested and compared. The most promising is the one based on the concept of a microvalve controlling dilution ratio of the standard and a solenoid micropump playing a double role: solution pumping device and mixing segments homogenizer. All investigated modules were tested with paired emitter detector diode (PEDD) as photometric flow-through detector and bromothymol blue as a model analyte. The best module was implemented into more advanced flow-injection system dedicated for optical detection of alkaline phosphatase activity using UV-PEDD-based flow-through detector for the enzyme reaction product.  相似文献   

19.
The dual or multiple reaction interface concept, commonly associated to the distinct flow techniques, was replaced by a single interface concept, which do not no rely on the utilisation of a well-defined and compelling sample volume but only on mutual penetration of sample and reagent zones at a single reaction interface where both sample and reagent met together prior to detection. In the proposed approach basic principles of flow analysis, such as controlled dispersion and reaction zone formation, are not influenced by sample and reagent volumes but determined exclusively by the extension of the overlap of two adjoining quasi-infinite zones enhanced by multiple flow reversals and the pulsed nature of the flowing streams.The detector is positioned at the core of the flow manifold (not in the conventional terminal position), and repetitive flow reversals enable interface manipulations, including multi-detection of the entire reaction interface or the monitoring of the evolution of a pre-selected interface zone by using suitable reversal cycle times.The implementation of the developed approach was facilitated due to the configuration simplicity and operational versatility of multi-pumping flow systems. Its performance was evaluated by monitoring processes involving two or four-solution reaction interfaces.  相似文献   

20.
A mathematical model for fitting the experimental ICM (integrated conductimetric method) curves developed by the authors in a previous work, is presented for the first time in this study. The proposed model fits the experimental curves with great precision and allows to predict physical dispersion for single-line flow injection system. The correlation of the model’s parameters with typical reactionless FIA peak parameters is also assessed. The IDQ coefficient—a novel dispersion estimator previously reported by the authors—can also be predicted when operational FIA variables are changed. Experimental and modelled profiles are compared as a function of the system’s variables, showing an excellent agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号