首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The poly-o-phenylenediamine (PoPD) nonconducting film and gold nanoparticles (AuNPs) were combined to fabricate AuNPs/PoPD film, which is used as a novel biocompatible interface for the immobilization of antibody and develop a simple and sensitive label-free immunoassay for the detection of the related antigen (human immunoglobulin G (IgG)). Surface plasmon resonance (SPR) and electrochemical methods were used to provide the real-time information about the polymer film growth, assembling of various sizes of gold nanoparticles, anti-human IgG antibody (anti-hIgG) immobilization and the antigen–antibody interaction. The microstructures of the PoPD and AuNPs/PoPD films were characterized by atomic force microscopy (AFM). These results demonstrated that AuNPs were uniformly dispersed on the porous surface of PoPD film, which formed a nano-structure biocompatible AuNPs/PoPD interface. The use of gold nanoparticles and PoPD film could enhance the immunoassay sensitivity and anti-nonspecific property of the resulting immunoassay electrode. Additionally, the reproducibility and preliminary application of anti-hIgG/AuNPs/PoPD/Au electrode for SPR detection of hIgG was also evaluated.  相似文献   

2.
An automated biomolecular interaction analysis instrument(BIAcore)based on surface plasmon resonance(SPR)has been used to determine human immunoglobulin G(IgG) in real time.Polyclonal anti-human IgG antibody was covalently immobilized to a carboxymethyldextran-modified gold film surface.The samples of human IgG prepared in HBS buffer were poured over the immpbilized surface.The signal amplification antibody was applied to amplify the response signal.After each measurement,the surface was regenerated with 0.1mol/L H3PO4.The assay was rapid,requiring only 30 min for antibody immobilization and 20 min for each subsequent process of immune binding,antibody amplification and regeneration.The antibody immobilized surface had good response to human IgG in the range of 0.12-60 nmol/L with a detection limit of 60 pmol/L.The same antibody immobilized surface could be used for more than 110 cycles of binding,amplification and regeneration.The results demonstrate that the sensitivity,specificity and reproducibility of amplified immunoassay using real-time BIA technology are satisfactory.  相似文献   

3.
合成了核壳型Fe3O4/Au复合粒子,并对其形貌、光学性质进行了表征.通过外加磁场将Fe3O4/Au复合粒子与兔抗人IgG的偶联体固定于表面等离子体子共振(SPR)传感器的金基底膜上,形成了Fe3O4/Au/抗IgG敏感膜.与传统的通过巯基丙酸连接蛋白的方式相比,磁场作用固定的Fe3O4/Au/抗IgG敏感膜制备简单,易洗脱,具有良好的再生性,且在一定程度上提高了传感器的灵敏度.并对人IgG进行了测定,结果表明,传感器对于浓度范围在1.25~20.00μg·mL-1的人IgG有良好的信号响应.  相似文献   

4.
An electrochemical label-free immunosensor based on a biotinylated single-chain variable fragment (Sc-Fv) antibody immobilized on copolypyrrole film is described. An efficient immunosensor device formed by immobilization of a biotinylated single-chain antibody on an electropolymerized copolymer film of polypyrrole using biotin/streptavidin system has been demonstrated for the first time. The response of the biosensor toward antigen detection was monitored by surface plasmon resonance (SPR) and electrochemical analysis of the polypyrrole response by differential pulse voltammetry (DPV). The composition of the copolymer formed from a mixture of pyrrole (py) as spacer and a pyrrole bearing a N-hydroxyphthalimidyl ester group on its 3-position (pyNHP), acting as agent linker for biomolecule immobilization, was optimized for an efficient immunosensor device. The ratio of py:pyNHP for copolymer formation was studied with respect to the antibody immobilization and antigen detection. SPR was employed to monitor in real time the electropolymerization process as well as the step-by-step construction of the biosensor. FT-IR demonstrates the chemical copolymer composition and the efficiency of the covalent attachment of biomolecules. The film morphology was analyzed by electron scanning microscopy (SEM).Results show that a well organized layer is obtained after Sc-Fv antibody immobilization thanks to the copolymer composition defined with optimized pyrrole and functionalized pyrrole leading to high and intense redox signal of the polypyrrole layer obtained by the DPV method. Detection of specific antigen was demonstrated by both SPR and DPV, and a low concentration of 1 pg mL−1 was detected by measuring the variation of the redox signal of polypyrrole.  相似文献   

5.
The immobilization of anti-IgG on Au-colloid modified gold electrodes has been investigated. A cleaned gold electrode was first immersed in a mercaptoethylamine (AET) solution, and then gold nanoparticles were chemisorbed onto the thiol groups of the mercaptoethylamine. Finally, anti-IgG was adsorbed onto the surface of the gold nanoparticles. Potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques were used to investigate the immobilization of anti-IgG on Au colloids. In the impedance spectroscopic study, an obvious difference of the electron transfer resistance between the Au-colloid modified electrode and the bare gold electrode was observed. The cyclic voltammogram tends to be more irreversible with increased anti-IgG concentration. Using the potentiometric immunosensor, the proposed technique is based on that the specific agglutination of antibody-coated gold nanoparticles, averaging 16 nm in diameter, in the presence of the corresponding antigen causes a potential change that is monitored by a potentiometry. It is found that the developed immunoagglutination assay system is sensitive to the concentration of IgG antigen as low as 12 ng mL(-1). Experimental results showed that the developed technique is in satisfactory agreement with the ELISA method, and that gold nanoparticles can be used as a biocompatible matrix for antibody or antigen immobilization.  相似文献   

6.
This paper reports results obtained when comparing an electrochemical enzyme immunosensor and a surface plasmon resonance (SPR) based immunosensor on the same gold surface installed in an electrochemical SPR flow cell. Simultaneous electrochemical and SPR measurements were performed on a gold surface modified with multilayers of poly‐L ‐lysine and poly‐styrenesulfonate assembled with the layer‐by‐layer method. First, we obtained the SPR response induced by the formation of an immunocomplex from the shift in the SPR angle by injecting an anti tumor necrosis factor‐α antibody solution labeled with alkaline phosphatase into the flow cell containing the multilayer modified with tumor necrosis factor‐α. Then we compared this SPR result with that obtained for the electrochemical oxidation current of p‐aminophenol catalyzed by alkaline phosphatase from p‐aminophenolphosphate on the same gold film. We compared the two immunosensor responses obtained using the different measurement principles and found that there was a high correlation efficient of 0.973 between them. This was because we were able to immobilize the immunoreagents with good stability and without losing the transport of the enzyme product in the multilayer whose thickness we easily controlled with nanometer scale accuracy. We also report that the detection limit of our electrochemical immunosensor after optimization was around 100 pg/mL (0.4 pM), which is one of the lowest values yet reported for an electrochemical immunosensor.  相似文献   

7.
A surface plasmon resonance (SPR) immunosensor based on a competitive immunoreaction for the determination of trinitrophenol (TNP) is described. A goat anti-mouse IgG (1st antibody), which recognizes an Fc moiety of an antibody, was immobilized on a gold film of an SPR sensor chip by physical adsorption. A TNP solution containing a fixed concentration of a mouse anti-TNP monoclonal antibody (2nd antibody) and a TNP-keyhole limpet hemocyanin (KLH) conjugate was incubated in one-pot and introduced into the sensor chip. The TNP-KLH conjugate competes with TNP for binding with the 2nd antibody. The resulting complex of the 2nd antibody with the TNP-KLH conjugate was bound to the 1st antibody, which is immobilized on the sensor chip. The SPR sensor signal based on resonance angle shift is dependent on the concentration of TNP in the incubation solution in the range from 25 ppt to 25 ppb, and the coefficient of variation of the SPR signals for the 25 ppb TNP solution was determined to be 13% (n = 4). The experimental results for the adsorption constant of the 1st antibody on the sensor chip and the binding constant of the 1st antibody complex with the 2nd antibody are discussed, together with theoretical considerations.  相似文献   

8.
Biosurface fabrication using the Fab′ fragment of immunoglobulin (IgG) was carried out by self-assembly (SA) technique. The pepsin-digested monoclonal antibody (Mab) against bovine insulin containing the F(ab′)2 fragment and residual proteins was separated using affinity chromatography and dialysis. To prevent the nonspecific binding of F(ab′)2 onto gold (Au) substrate, the native disulfide bridge was reduced using dithiothreitol (DTT) to convert F(ab′)2 into Fab′, which made the immobilization to be carried out via the native thiol (–SH) group. The fabricated biosurface using SA technique showed the formation of stable thin film through AFM topography. Through the concentration change of DTT and Fab′, the absorption characteristics against the Au surface were investigated using surface plasmon resonance (SPR) with the flow cell. The amount of immobilized antibody fragment and the antigen binding capacity were regulated with respect to the reduction state and concentration of F(ab′)2. Based on the biosurface of the fabricated Fab′, the insulin-detection was carried out by the measurement of SPR. The proposed antibody surface could successfully detect the bovine insulin at the concentration from 100 ng/mL to 10 μg/mL.  相似文献   

9.
《Analytical letters》2012,45(9):1809-1821
Abstract

In the development of electrochemical immunosensing strategies, stability or activity of the immobilized biocomponents and signal amplification of the immunoconjugates are two key factors. In this study, a comparative study of immunoglobulin G antibody (anti‐IgG) immobilization, as a model, was performed on cysteine (Cys), 2‐aminoethane thiol (AET), and 11‐mercaptoundecanoic acid (MUA) monolayers. The change of anti‐IgG layer formation on the three base layers as a function of the anti‐IgG concentration was investigated in parallel via electrochemical impedance spectroscopy, cyclic voltammetry, surface plasmon resonance, and quartz crystal microbalance. Through the parallel measurements, we demonstrate that the Cys‐modified layer is more suitable for the immobilization of the anti‐IgG molecules than the MUA or AET‐modified layer. Based on the CV and EIS analyses, it was determined that the current responses decreased with the increment of anti‐IgG concentration, while the resistance responses increased with the concentration of anti‐IgG increased. Moreover, the current and resistance shifts were more remarkable on the Cys layer than that of the other two layers. In the SPR and QCM measurements, the SPR and QCM response signals were similar in shape but differing in time scales, reflecting differences in detection mechanisms. With regard to the fundamental problem of comparing different measurement principles, the mechanism of the IgG immobilized on the three layers was proposed. Consequently, the surface concentration of anti‐IgG immobilized on the electrode should be optimized to improve the sensitivity of the immunosensors.  相似文献   

10.
The fabrication of antibody thin film using both protein G and oligonucleotide was carried out by self-assembly (SA) technique for immunosensor. A mixture of 11-mercaptoundecanoic acid (MUA) and oligonucleotide with thiol (SH) end group was self-assembled of gold (Au) surface for two-dimensional (2D) configuration. Protein G was chemically adsorbed on the 11-MUA surface, and then the antibody was immobilized on the protein G region. On the immobilized single-stranded DNA, the complementary DNA–antibody conjugate was hybridized for the oriented immobilization of antibody. The formation of self-assembled 11-MUA/oligonucleotide layer, protein G immobilization, antibody layer, and antigen binding was investigated using surface plasmon resonance (SPR). The topographies of the fabricated surfaces were observed by atomic force microscopy (AFM). When compared with the amount of antigen binding on the antibody thin film fabricated by protein G only, the proposed biosurface fabricated with both protein G and oligonucleotide showed better binding capacity, which implicates the improvement of the detection limit.  相似文献   

11.
This article presents a simple chronoamperometric immunosensor for the quantitative assessment of creatine kinase MB (CK-MB) in 50 μL undiluted serum samples. The immunosensor consists of gold working and counter electrodes patterned onto a glass chip by thin-film photolithography and an external Ag|AgCl reference electrode. The detection limit (DL) of the chronoamperometric method is 13 ng mL−1 (DL = 2×RMSD/S, where RMSD is the residual mean standard deviation of the measured points around a calibration curve with a slope of S). In spiked serum samples, the response was linear up to 300 ng mL−1 of CK-MB. A surface plasmon resonance (SPR) system with simultaneous electrochemical detection (EC-SPR) aided the development of the sandwich immunoassay. Real-time monitoring of the SPR signal was used to optimize the capture antibody immobilization, CK-MB and detection antibody binding, as well as to minimize the nonspecific adsorption of serum proteins to the sensor surface. The detection antibody has been labeled with alkaline phosphatase (ALP) enzyme for sensitive electrochemical detection. ALP catalyzes the hydrolysis of ascorbic acid phosphate and generates ascorbic acid, which is measured chronoamperometrically. The electrochemical immunoassay for CK-MB was less sensitive to nonspecific adsorption related interferences, had a better detection limit, and required a lower volume of sample than the SPR method.  相似文献   

12.
《Analytical letters》2012,45(3):499-507
Regeneration of the sensor chip surface is difficult in many surface plasmon resonance (SPR) biosensor assays. Improper regeneration will reduce life span of the sensor chip and decrease the quality of the data. Considering the advantages of reducing the regeneration frequency, a theoretically feasible continuous SPR biosensor immunoassay for sulfamethazine (SMT) was developed. In the continuous inhibitive immunoassay, the sensor chip surface is regenerated only once after a definite number of tests instead of every test. The SMT-bovine serum albumin (BSA) conjugate was covalently immobilized to a carboxymethyldextran modified gold film. The immobilization conditions of the antigen were studied and the working dilution of the antibody was optimized. The antibody was mixed with SMT of different concentrations prepared with PBS buffer to construct the calibration curve. The limit of detection was 0.5 ng mL?1. The continuous SPR biosensor assay was proved to be simpler and more practical than a normal one.  相似文献   

13.
Myogloblin, a well-known metalloprotein, was immobilized on a gold surface using various chemical linkers to investigate the length effect of chemical linker on the electron transfer in protein layers, because chemical linkers play roles in the pathway that transfers the electron from the protein to the gold substrate and act as protein immobilization reagents. Chemical linkers with 2, 6, 11, and 16 carbons were utilized to confirm length-effects. The immobilization of protein and chemical linker was validated with surface plasmon resonance (SPR) and atomic force microscopy (AFM). The electrochemical property was evaluated by cyclic voltammetry (CV) and chronocoulometry (CC). In those results, redox peaks of immobilized protein were controlled via the length of chemical linkers, and it could be directly applied to the realization of bioelectronic device.  相似文献   

14.
Using an enhanced surface plasmon resonance (SPR) immunosensor, we have determined the concentration of human complement factor 4 (C4). Antibody protein was concentrated into a carboxymethyldextran-modified gold surface by electrostatic attraction force and a simultaneous covalent immobilization of antibody based on amine coupling reaction took place. The sandwich method was applied to enhance the response signal and the specificity of antigen binding assay. The antibody immobilized surface had good response to C4 in the range of 0.02-20 μg/ml by this enhanced immunoassay. The regeneration effect by pH 2 glycine-HCl buffer was also investigated. The same antibody immobilized surface could be used more than 80 cycles of C4 binding and regeneration. In addition, the ability to determinate C4 directly from serum sample without any purification was investigated. The sensitivity, specificity and reproducibility of the enhanced immunoassay are satisfactory. The results clearly demonstrate the advantages of the enhanced SPR technique for C4 immunoassay.  相似文献   

15.
《Analytical letters》2012,45(14):2641-2652
Abstract

A surface plasmon resonance (SPR)‐immunosensor based on nano‐size gold hollow ball (GHB) with dendritic surface has been developed for detection of Ochratoxin A (OTA). A thionine thin film was initially electropolymerized onto the SPR‐probe surface, and then anti‐OTA monoclonal antibody (anti‐OTA) was immobilized onto the SPR‐probe surface by means of GHB conjugation. The binding of target molecules onto the immobilized antibodies causes an increase in the resonant angle of the sensor chip, and the resonant angle shift was proportional to the OTA concentration in the range of 0.05–7.5 ng/ml with a detection limit of 0.01 ng/ml at a signal/noise ration of 3. A glycine‐HCl solution (pH 2.8) was used to release antigen‐antibody complexes from the biorecognition surface. Good reusability was exhibited. Moreover, spiking various levels of OTA into three milk samples was assayed using the proposed immunoassay. Analytical results show the precision of the developed immunoassay is acceptable. Compared with the conventional enzyme‐linked immunosorbent assay, the proposed immunoassay system was simple and rapid without multiple labeling and separation steps. Importantly, the proposed immunoassay system could be further developed for the immobilization of other antigens or biocompounds.  相似文献   

16.
A systematic evaluation of the effects of antibody immobilization strategy on the binding efficiency and selectivity (e.g., ability to distinguish between specific and nonspecific interactions) of immunosurfaces prepared with F(ab') antibody fragments of rabbit Immunoglobulin G (IgG) is described. F(ab') was attached to gold surfaces either (1) directly via the formation of a gold-thiolate bond or (2) indirectly through a series of a bifunctional linkers containing an alkane chain or ethylene glycol spacer. Immobilization of F(ab') via the sulfhydryl reactive group located opposite the antigen binding site ensured optimum orientation of the antigen binding site. X-ray photoelectron spectroscopy (XPS) and surface plasmon resonance (SPR) were used to confirm surface modification with the bifunctional linkers and antibody immobilization, respectively. Binding efficiency assays performed with SPR indicated that increasing the length of the linker increased the antigen binding efficiency. Atomic force microscopy (AFM) adhesion force measurements indicated that AFM probes functionalized with directly immobilized F(ab') more effectively discriminated between specific and nonspecific surface-bound proteins than probes modified indirectly via linker-immobilized F(ab'). In addition, a greater number of antibody-antigen binding events were observed with directly immobilized F(ab')-functionalized probes.  相似文献   

17.
This paper reports the utilization of triangular silver nanoplates (TSNPs) to enhance the sensitivity of surface plasmon resonance (SPR) biosensor. TSNPs modified with 3-mercaptopropinic acid (MPA) were simply mixed with chitosan and glutaraldehyde to form TSNPs/chitosan composite. The composite was deposited on Au film as immobilization substrate for SPR biosensor. The novel structures of TSNPs are preserved against etching by MPA and chitosan polymer. Moreover, chitosan cross-linked by glutaraldehyde enables antibody to be immobilized on fabricated substrate directly via Schiff alkali reaction. In the optimized conditions, the resulting biosensor based on TSNPs/chitosan composite shows a satisfactory response to bovine IgG in the concentration range of 0.075–40.00 μg mL−1. While the biosensor based on chitosan without TSNPs shows a response in the concentration range of 0.6–40 μg mL−1 and the biosensor based on Au film shows a response in the concentration range of 2.5–40 μg mL−1. The experiment results show that the sensitivity of SPR biosensor based on TSNPs/chitosan composite was significantly enhanced and the immobilization procedure of antibody was simplified.  相似文献   

18.
Dual polarization interferometry (DPI) is used for a detailed study of antibody immobilization with and without orientation control, using prostate specific antigen (PSA) and its antibody as model. Thiol modified DPI chips were activated by a heterobifunctional cross-linker (sulfo-GMBS). PSA antibody was either directly immobilized via covalent binding or coupled via the Fc-fragment to protein G covalently attached to the activated chip. The direct covalent binding leads to a random antibody orientation and the coupling through protein G leads to an end-on orientation. Ethanolamine (ETH) was used to block remaining active sites following the direct antibody immobilization and protein G immobilization. A homobifunctional cross-linker (BS3) was used to stabilize the antibody layer coupled on protein G. DPI provides a real-time measurement of the stepwise molecular binding processes and gives detailed geometrical and structural values of each layer, i.e., thickness, mass, and density. These values evidence the end-on orientation of closely packed antibody on protein G layer and reveal structural effects of ETH blocking/deactivation and BS3 stabilization. With the end-on immobilized antibody, PSA at 10 pg/mL can be detected by DPI through a sandwich complex that satisfies the clinical requirement (assuming <30 pg/mL as clinically safe). However, the randomly immobilized antibody failed to detect PSA at 1 ng/mL. In a parallel study using surface plasmon resonance (SPR) spectroscopy, random and end-on antibody immobilization on streptavidin-modified gold surface was evaluated to further validate the importance of antibody orientation control. With the closely packed antibody layer on protein G surface, SPR can also detect PSA at 10 pg/mL.  相似文献   

19.
蒋芸  崔颜  姚建林  顾仁敖 《化学学报》2006,64(3):240-244
通过表面增强拉曼光谱(SERS)研究了标记分子4,4'-联吡啶在金溶胶上的吸附行为,并将其与山羊抗小鼠IgG结合,获得SERS标记免疫金溶胶.在固相基底上组装抗体,两者组装得到固相抗体-抗原-标记抗体“三明治”结构.在单组分和双组分体系中借助抗体上标记金纳米粒子所带的SERS信号达到免疫检测的目的.  相似文献   

20.
通过表面增强拉曼光谱(SERS)研究了标记分子4,4'-联吡啶在金溶胶上的吸附行为, 并将其与山羊抗小鼠IgG结合, 获得SERS标记免疫金溶胶. 在固相基底上组装抗体, 两者组装得到固相抗体-抗原-标记抗体“三明治”结构. 在单组分和双组分体系中借助抗体上标记金纳米粒子所带的SERS信号达到免疫检测的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号