首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
In pH 6.0-11.2 Britton-Robinson buffer solution, binding of heparin with crystal violet (CV) can result in a significant enhancement of resonance Rayleigh scattering (RRS) and resonance non-linear scattering, such as frequency doubling scattering (FDS) and second-order scattering (SOS). Their maximum scattering wavelengths, λex/λem, appear at 492 nm/492 nm for RRS, 984 nm/492 nm for FDS and 492 nm/984 nm for SOS, respectively. The optimum conditions of the reaction, the influencing factors and the relationship between the three scattering intensities and the concentration of heparin have been investigated. New methods for the determination of trace amounts of heparin based on the RRS, FDS and SOS methods have been developed. The methods exhibit high sensitivities, the detection limit for heparin is 2.9 ng ml−1 for the RRS method, 3.5 ng ml−1 for the FDS method and 3.3 ng ml−1 for the SOS method. The methods have good selectivity and were applied to the determination of heparin in heparin sodium injection samples with satisfactory results.  相似文献   

2.
Fluorescence and terbium-sensitised luminescence properties of new quinolone garenoxacin have been studied. The fluorimetric method allows the determination of 0.060-0.600 μg ml−1 of garenoxacin in aqueous solution containing HCl/KCl buffer (pH 1.5) with λexc=282 nm and λem=421 nm. Micellar-enhanced fluorescence was also studied, leading to a higher than 400% increase in analytical signal in presence of 12 mM sodium dodecyl sulphate (SDS), allowing the determination of 0.020-0.750 μg ml−1 of garenoxacin. The terbium-sensitised luminescence method allows the determination of 0.100-1.500 μg ml−1 of garenoxacin in 12 mM SDS solution containing 0.08 M acetic acid/sodium acetate buffer (pH 4.1) and 7.5 mM Na2SO3 (chemical deoxygenation agent), with λexc=281 nm and λem=546 nm. Relative standard deviation (R.S.D.) values for the three methods were in the range 1.0-2.0%. The proposed procedures have been applied to the determination of garenoxacin in spiked human urine and serum.  相似文献   

3.
We describe here a method for detecting and quantifying the highly carcinogenic polycyclic aromatic hydrocarbon (PAH) benzo[a]pyrene (BaP) in water, based on a flow-trough optical sensor. The technique is fast (response time of 40 s) and simple and at the same time meets the standards of sensitivity and selectivity required by the European Guidelines on Water for Human Consumption. The optosensor is based on the on-line immobilization of BaP on a non-ionic resin (Amberlite XAD-4) solid support in a continuous-flow system. BaP was analyzed in a 15 mM H2PO4/HPO42− buffer solution with 25% (v/v) 1,4-dioxane at pH 7. Fluorescence intensity was measured at λex/em=392/406 nm. The experimental conditions (reagent phase, pH, type and concentration of buffer solution and organic solvent) and flow-injection values (flow rate and injection volume) were carefully controlled. Under these conditions the optosensor was sensitive to a linear concentration range of between 3.0 and 250.0 ng l−1 with a detection limit of 3.0 ng l−1 and a standard deviation of 1.5% at 150 ng l−1. The optosensor was applied to the quantification of BaP in drinking and waste water samples (95-105% recovery) in presence of the other 15 EPA PAHs at 1000 ng l−1 concentration level. The influence of other fluorescent polycyclic aromatic hydrocarbons and potential interference from ions usually present in water was also evaluated.  相似文献   

4.
A highly sensitive catalytic quenching spectrofluorimetric method was described for the determination of V(V) based on its catalytic effect on the oxidation of 1,8-diaminonaphthalene by potassium bromate with Tiron as an activator in weakly acidic medium and the reaction mechanism was investigated. The reaction was followed spectrofluorimetrically by measuring the fluorescence intensity of 1,8-diaminonathphlene (DAN) (λex=356 nm, λem=439 nm) at a fixed time of 5 min from initiation of the reaction. Under the optimum conditions, vanadium(V) can be determined in the range 0.05-50.0 ng ml−1 with a S.D.=0.024 for 15 times measurements. The detection limit of the method was down to 0.0088 ng ml−1 and the catalytic reaction activation energy was found to be 43.92 kJ mol−1. The proposed method was tested for the determination of vanadium(V) in rice and natural water samples.  相似文献   

5.
A high-performance liquid chromatographic method has been developed for the determination in human plasma of the specific serotonin reuptake inhibitor (SSRI) antidepressant paroxetine and its three main metabolites (M1, M2, M3). Fluorescence detection was used, exciting at λ = 294 nm and monitoring emission at λ = 330 nm for paroxetine (λexc = 280 nm, λem = 330 nm for M1 and M2; λexc = 268 nm, λem = 290 nm for M3). Separation was obtained on a reversed-phase C18 column using a mobile phase composed of 66.7% aqueous phosphate at pH 2.5 and 33.3% acetonitrile. Imipramine (λexc = 252 nm, λem = 390 nm) was used as the internal standard. A careful pre-treatment of plasma samples was developed, using solid-phase extraction with C8 cartridges (50 mg, 1 mL). The calibration curves were linear over a working range of 2.5-100 ng mL−1 for paroxetine and of 5-100 ng mL−1 for all metabolites. The limit of detection (LOD) was 1.2 ng mL−1 for PRX and 2.0 ng mL−1 for the metabolites. The method was applied with success to plasma samples from depressed patients undergoing treatment with paroxetine. Hence, the method seems to be suitable for the therapeutic drug monitoring of paroxetine and its main metabolites in depressed patients’ plasma.  相似文献   

6.
A sensitive and selective phosphorimetric method for the determination of 1-naphthaleneacetic acid (1-NAA) based on a flow-injection system connected to a flow cell packed with a solid support and placed in the sample compartment of a conventional luminescence spectrometer is described. A non-ionic solid polymeric resin Amberlite XAD-7 is used for the packing. After injection of the sample, 1-NAA is on-line retained in the packed resin and measurements of the heavy atom induced (HAI)-room temperature phosphorescence (RTP) emission (λex/λem = 292/490 nm) from this native luminescent compound are taken.The optimum experimental conditions were investigated by injecting 2 ml samples of an aqueous solution of 1-NAA in the flow system. A concentration 0.15 mol l−1 of thallium(I) ions, as heavy atom, both in the samples and the carrier flow, was finally selected. Also, a concentration of 6 mmol l−1 of sulphite was optimal for ensuring the necessary deoxygenation of the system at the selected flow rate of 0.8 ml min−1. After measurement, the solid support was efficiently regenerated by injecting 1 ml of a mixture water:acetone in a ratio 1:1 (v/v) into the flow.The detection limit (3σ criterion) was 1.2 ng ml−1 of 1-NAA. The repeatability (R.S.D.) for five replicates of a sample containing 50 ng ml−1 of analyte turned out to be ±3% and the calibration graphs proved to be linear up to 500 ng ml−1 of 1-NAA (maximum concentration assayed). The effect of potential interferences from other organic species which can be also used as plant growth regulators, as well as from various inorganic cations and anions, has been investigated as well.The method was successfully applied to the determination of low levels of this plant growth regulator in natural waters (river and fountain waters) and apples.  相似文献   

7.
Biswas S  Chowdhury B  Ray BC 《Talanta》2004,64(2):308-312
A highly sensitive and virtually specific method has been developed for the trace and ultra trace 5 ng ml−1-1 μg ml−1 fluorimetric analysis of nitrite. The method is based on the quenching action of nitrite on the native fluorescence of murexide (ammonium purpurate) [λex=349.0 nm, λem=444.5 nm] in the acid range of 0.045-0.315 (M) H2SO4. The method is very precise and accurate (S.D.=±0.4877 and R.S.D.=0.4878% for the determination of 0.1 μg ml−1 of nitrite in 11 replicates). Relatively large excesses of over 35 cations and anions do not interfere. The proposed technique has been successfully applied for the determination of nitrite and nitrate in ground water, surface water and sea water, nitrite in soil and nitrate in forensic samples. The method has also been extended for the analysis of NOx in air.  相似文献   

8.
Fenitrooxon [O,O-dimethyl-O-(4-nitro-m-tolyl)phosphate] is the major metabolite of the organophosphorus insecticide fenitrothion, and 3-methyl-4-nitrophenol is its major degradation product. In the present study, we describe the development of an indirect competitive enzyme-linked immunosorbent assay (ELISA) for the detection of these compounds in water samples based on a group-specific polyclonal antiserum generated with a “bifunctional hapten”, which has two functions: the conventional function of producing an antibody against an antigen and a unique function of promoting the production of the antibodies in rabbit. For application to water samples, the influence of several factors such as organic solvent, pH, and detergent was studied. Under optimized conditions, the quantitative working range of the fenitrooxon ELISA was 0.71-27 ng ml−1 with a limit of detection (LOD) of 0.32 ng ml−1, and the fenitrooxon concentration giving 50% reduction of the maximum signal (IC50) was 4.2 ng ml−1. The quantitative working range of the 3-methyl-4-nitrophenol ELISA was 0.67-27 ng ml−1 with a LOD of 0.38 ng ml−1 and an IC50 of 3.7 ng ml−1. No significant matrix effect originating from the water sample (river water, tap water, purified water, and bottled water) was shown by addition of Tween 20 to the assay buffer. Water samples spiked with each of these compounds at 1, 5, 10, and 20 ng ml−1 were directly analyzed without extraction and clean-up by the proposed ELISA. The mean recovery was 100.9%, and the mean coefficient of variation (CV) was 7.7% for the fenitrooxon ELISA and for the 3-methyl-4-nitrophenol ELISA, the mean recovery was 97.6%, and the mean CV was 7.2%. The proposed ELISA allows precise and accurate determination of these compounds in water at such low levels.  相似文献   

9.
《Analytica chimica acta》2003,493(1):35-45
A novel, versatile and sensitive continuous-flow on-line solid phase fluorescence based system is proposed for the simultaneous determination of benomyl and carbendazim. The continuous-flow system is based on the on-line preconcentration and resolution of the pesticides on a solid sensing zone, followed by the sequential measure of their native fluorescence, monitored at 235/306 and 293/398 nm (λexc/λem for carbendazim and benomyl, respectively), and later desorption of these analytes (from the flow-through cell filled with C18 silica gel) using aqueous methanol mixtures as carrier and eluent solutions.A double discrimination is used for the simultaneous monitoring of these analytes: (1) the usage of two pair of excitation/emision wavelengths, performed by the use of a multiwavelength fluorescence detection mode and (2) a temporary sequentiation in the arrival of the analytes to the sensing system by on-line separation due to the different kinetics showed by the analytes in the sorption-desorption process performed just in the solid support placed in the flow-through cell. Carbendazim is determined the first, because it shows a weaker retention in the C18 bonded phase silica beads, while benomyl is strongly fixed. Then, benomyl is conveniently eluted from the flow-through sensing zone and its native fluorescence signal is measured (at 398 nm). The sensor was calibrated for two different injection volumes: 400 and 2000 μl. Using a 2000 μl sample volume, the analytical signal showed linearity in the range 0.050-1.0 and 0.020-0.50 μg ml−1 with detection limits of 3.0 and 7.5 ng ml−1 for carbendazim and benomyl, respectively, and R.S.D. values smaller than 2% for both analytes. A recovery study was performed on four different spiked environmental water samples at concentration levels from 0.05 to 0.35 μg ml−1. The recovery percentage ranged from 97 to 104%, and from 98 to 104%, for benomyl and carbendazim, respectively.  相似文献   

10.
This paper describes a highly sensitive, selective catalytic-kinetic-spectrophotometric method for the determination of copper(II) concentration as low as 6 ng ml−1. The method is based on the catalytic effect of copper(II) on the oxidation of citric acid by alkaline hexacyanoferrate(III). The reaction was followed by measuring the decrease in absorbance of hexacyanoferrate(III) at 420 nm (λmax of [Fe(CN)6]3−,  = 1020 dm3 mol−1 cm−1). The dependence of rate of the indicator reaction on the reaction variables has been studied and discussed to propose a suitable mechanism to get a relation between the reaction rate and [Cu2+]. A fixed time procedure has been used to obtain a linear calibration curve between the initial rate and lower [Cu2+] or log[Cu2+] in the range 1 × 10−7 to 4 × 10−4 mol l−1 (6.35-25,400 ng ml−1). The detection limit has been calculated to be 4 ng ml−1. The maximum average error is 3.5%. The effect of the presence of various cations, commonly associated with copper(II) and some anions has also been investigated and discussed. The proposed method is sensitive, accurate, rapid and inexpensive compared to other techniques available for determination of copper(II) in such a large range of concentration. The new method has been successfully applied for the determination of copper(II) in various samples.  相似文献   

11.
Dai XX  Li YF  He W  Long YF  Huang CZ 《Talanta》2006,70(3):578-583
A dual-wavelength resonance lighting scattering (DW-RLS) ratiometry is developed to detect anion biopolymer based on their bindings with cation surfactant. Using the interaction of Hyamine 1622 (HM) with fish sperm DNA (fsDNA) as an example, a dual-wavelength resonance light scattering (DW-RLS) ratiometric method of DNA was constructed. In Britton-Robinson buffer controlled medium, fish sperm DNA (fsDNA) could interact with Hyamine 1622 (HM), displaying significantly enhanced RLS signals. By measuring the RLS signals characterized at 300.0 nm (I300.0) and the RLS intensity ratio (I276.0/I294.0), respectively, fsDNA over a wide dynamic range of content could be detected. Typically, when HM concentration is kept at 6.0 × 10−5 mol l−1, using I300.0 could detect fsDNA over the range of 50-2000 ng ml−1 with the limit of 3.0 ng ml−1, while using I276.0/I294.0 could detect fsDNA over the range of 0.5-2500 ng ml−1 with the limit of 0.05 ng ml−1. Thus the latter so-called DW-RLS ratiometry is obviously superior to the former one. Based on the measurements of I300.0 and I276.0/I294.0 data, a Scatchard plot concerning the interaction between HM and fsDNA could be constructed and thus the binding number (n) and binding constant (K) could be available with the values of 13.5 and 1.35 × 105 mol−1 l, and 11.9 and 1.65 × 105 mol−1 l, respectively.  相似文献   

12.
Luminescent silicon dioxide nano-particles with size of 20 nm, which containing dibromofluorescein (D) were synthesized by sol-gel method (symbolized by D-SiO2).The particles can emit intense and stable room temperature phosphorescence signal on polyamide membrane when Pb(Ac)2 was used as a heavy atom perturber. The λexmax/λemmax was 457/622 nm. Our research indicated that the specific immune reaction between goat-anti-human IgG antibody labeled with D-SiO2 and human IgG could be carried out on polyamide membrane quantitatively, and the phosphorescence intensity of the particle was enhanced after the immunoreactions. Thus a new method of solid substrate room temperature phosphorescence immunoassay (SS-RTP-IA) for the determination of human IgG was established basing on antibody labeled with the D-SiO2 nanoparticles. The linear range of this method was 0.0624-20.0 pg human IgG spot−1 (corresponding concentration: 0.156-50.0 ng ml−1, the sample volume: 0.40 μl spot−1) with a limit of detection (LD) as 0.018 pg spot−1, and the regression equation of working curve was ΔIp = 7.201 mIgG (pg spot−1) + 82.57. Samples containing 0.156 and 50.0 ng ml−1 of IgG were measured repeatedly for 11 times and R.S.D.s were 4.1 and 3.4%, respectively. Results showed that this method had the merits as sensitive, accurate and precise.  相似文献   

13.
A procedure for the determination of Imidacloprid and its main metabolites was set up by means of liquid chromatography with an electrochemical detector and post-column photochemical reactor (LC--ED). Sample clean-up was developed for bees, filter paper and maize leaves. Chromatographic conditions were based on a reversed-phase C-18 column operated by phosphate buffer 50 mM/CH3CN (80/20, v/v) at pH 2.9. Detection of Imidacloprid and its metabolites was performed at a potential of 800 mV after photoactivation at 254 nm. Compared to conventional techniques such as gas chromatography/mass spectrometry (GC/MS) or LC coupled to other detectors, the present method allows simultaneous trace-level determination of both Imidacloprid (0.6 ng ml−1) and its main metabolites (2.4 ng ml−1).  相似文献   

14.
A simple and rapid homogeneous enzyme immunoassay involving the use of the malic dehydrogenase enzyme and a long-wavelength fluorophor, the oxazine Cresyl Violet, is proposed for the determination of the antibiotic amikacin in water samples. An enzymatic tracer has been synthesized by covalent binding of amikacin to malic dehydrogenase via a carbodiimide derivative. Free tracer catalyses the reaction between Cresyl Violet and malic acid giving rise to a decrease in the fluorescence of the fluorophor. Kinetic curves for this reaction have been monitored at λex 585 and λem 624 nm using the stopped-flow mixing technique, being the initial rate measured in only 2-3 s. The dynamic range of the method is 1-15 ng mL−1 and the detection limit is 0.3 ng mL−1, using aqueous standard solutions or water samples. The precision, obtained at 1 and 5 ng mL−1 and expressed as relative standard deviation, was 6.0 and 9.6%, respectively. The method has been applied to the analysis of drinking, river and wastewater samples. The sample pre-treatment involved a solid-phase extraction step for the clean-up of the samples. A recovery study was carried out to validate the method, being the values obtained in the range 80-114%, with a mean value of 96.7%.  相似文献   

15.
No previous publications about percutaneous absorption of polyethylene glycol 25 p-aminobenzoic acid (PEG-25 PABA) have been found in the literature and the expected levels to be found in human urine after sunscreens use are unknown. The method proposed here is suitable to determine PEG-25 PABA in the urine of sunscreens users in order to carry out studies on body accumulation/excretion. It is based on solid-phase extraction (SPE) with size-exclusion liquid chromatography determination. Solid-phase extraction allows the analyte to be retained and subsequently eluted for a clean-up, using a silica-based cartridge. The size-exclusion liquid chromatography of the eluted allows the rest of matrix interferences to be avoided. Fluorescence intensity was measured at λem = 350 nm (λexc = 300 nm). The sensitivity of the proposed method is in the order of 450 ± 5 mL ng−1 and the detection limit (3 Sy/x/b) in the measured solutions is in the order of 13 ng mL−1, that is 2.6 ng mL−1 in urine samples. The method enables PEG-25 PABA to be determined in both, spiked and unspiked human urine samples. Results obtained for spiked human urine samples (11-100 ng mL−1) demonstrated the accuracy of the method. The mean relative standard deviation of the results was in the order of 3-10%. Three volunteers applied a sunscreen lotion containing a 8% PEG-25 PABA sunscreen cream and their urinary excretion was controlled from the moment of application until the excreted amounts were no longer detectable.  相似文献   

16.
In the present work, an analytical method for determination of risedronate, a member of bisphosphonates, is described for the routine analysis in rat plasma. Sample pre-treatment involves protein precipitation, co-precipitation with calcium at alkaline pH, hydrolysis of possible derivatives of pyrophosphate and reprecipitation. A good separation was obtained by using a reversed-phase column (Hypersil ODS-2 C18, 4.6 mm × 250 mm, 5 μm). The mobile phase was an aqueous solution of buffer (contained 1.5 mM EDTA-2Na, 1 mM sodium etidronate, 11 mM sodium phosphate and 5 mM tetrabutylammonium bromide as ion-pair reagent) - methanol (88:12, v/v) adjusted to pH 6.75 using 1 M NaOH. The flow rate was 1 ml min−1. UV detection (λ = 262 nm) was used to quantitate risedronate in the concentration range of 10-500 ng ml−1. The limit of detection and quantitation for risedronate were 7 and 10 ng ml−1, respectively. The method was applied successfully to plasma samples from Wistar rats undergoing oral administration of risedronate mini-pills. Precision, extraction recoveries, as well as accuracy results, were satisfactory and no interference was found at the retention time of risedronate. Hence, the method is suitable for monitoring risedronate in rat plasma.  相似文献   

17.
A highly sensitive and relatively interference-free spectrophotometric method for determination of calcium is described. The method is based on the reaction between calcium ions and carboxyazo-p-CH3 in aqueous citrate medium of pH 7, to form a blue complex with maximum absorption at 716 nm. The calibration is linear up to 0.12 μg ml−1 calcium with a repeatability (R.S.D.) of 1.0% at a concentration of 0.04 μg ml−1 (n=5). The molar absorptivity of the complex and Sandell’s sensitivity are 3.5×105 l mol−1 cm−1 and 0.11 ng cm−2, its 10σ limit of quantification and the 3σ limit of detection were found to be 0.3 ng ml−1 and 0.09 ng ml−1 respectively. The influence of reaction variables and the effect of interfering ions are studied; no interference was observed in clinical samples. The proposed method has been applied directly to the determination of calcium in clinical samples without the need for pre-concentration, masking metal ions and digesting samples.  相似文献   

18.
A direct method for the simultaneous determination of naproxen and salicylate in human serum is reported, based on a combination of spectrofluorometric measurements with two multivariate calibration techniques: partial least-squares (PLS-1) and the novel net analyte preprocessing (NAP). The method is rapid, selective and sensitive, and is based on the measurement of the fluorescence spectra of NH3 alkalinized whole human sera at the excitation wavelength of 315 nm. It can be applied within the ranges of concentrations 50-200 ng ml−1 for naproxen and 100-300 ng ml−1 for salicylate. The employed chemometric techniques have been compared on the basis of the statistical indicators for calibration and validation. Reproducibility and interference studies in abnormal sera have also been carried out.  相似文献   

19.
L. Molina-García 《Talanta》2009,79(3):627-632
Disodium cromoglycate (SCG) is an anti-allergic drug, which is applied locally or inhaled. After administration, a very small portion of the drug is absorbed, being the most eliminated part unchanged in the urine and bile; therefore, its determination in urine is indicative of the dose absorbed. Here, the first spectroscopic method for the determination of SCG, making use of a sequential injection optosensor with terbium-sensitized luminescence detection, is described. The cationic resin Chelex-100 was used as solid support in the detection area. The measurements were made at 336/545 nm (λex/λem) and the system was calibrated for two sample volumes, 150 and 800 μl, depending on the samples analyzed. A detection limit of 15 ng ml−1 and a RSD lower than 2% (n = 10) were observed using the highest sample volume. The proposed method does not use any organic solvent or surfactant, so being environmental friendly. The analyte was satisfactorily determined in pharmaceuticals and human urine, the latter being spiked at the concentrations found after the administration of the drug.  相似文献   

20.
Drusković V  Vojković V  Miko S 《Talanta》2004,62(3):489-495
A new spectrofluorimetric determination of iridium(IV) with 3-hydroxy-2-methyl-1-phenyl-4-pyridone (HX) or 3-hydroxy-2-methyl-1-(4-tolyl)-4-pyridone (HY) is reported. Iridium(IV) react with HX or HY and chelates were extracted into chloroform or dichloromethane. The organic phase showed fluorescence. The fluorescence measurements to quantify iridium were carried out in its fluorescent band centred at λex=373 nm and λem=480 nm. Under optimal conditions, the calibration graphs were linear over the concentration range of 0.1-7.6 μg ml−1 of iridium for Ir(IV)-HX and 0.1-5.8 μg ml−1 for Ir(IV)-HY with a correlation coefficients of 0.999 and 0.992 and relative standard deviation of ±1.1%.The method is free from interference by Rh(III) and Pt(IV), which normally interfere with other methods. Iridium can be determined in the presence of 300-fold excess of rhodium(III) and 10-fold excess of platinum(IV).The method was applied successfully to the determination of iridium in some synthetic mixtures and mineral sample gave satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号