首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of multivariate spectrophotometric calibration for the simultaneous determination of three active components and one excipient in nasal solutions is presented. The resolution of four-component mixtures of phenylephrine, diphenhydramine, naphazoline and methylparaben in a matrix of excipients has been accomplished by using partial least-squares (PLS-1) and a variant of the so-called hybrid linear analysis (HLA) named net analyte preprocessing (NAP). Notwithstanding the presence of a large number of components and their high degree of spectral overlap, they have been rapidly and simultaneously determined with high accuracy and precision, with no interference, and without resorting to extraction procedures using non-aqueous solvents. A simple and fast method for wavelength selection in the calibration step is used, based on the minimisation of the predicted error sum of squares (PRESS) calculated as a function of a moving spectral window. The use of calibration designs of reduced size has been attempted. Satisfactory results were obtained when the number of calibration samples was reduced from 25 (full central composite) to 17 (fractional central composite) using the net analyte-based NAP method.  相似文献   

2.
The use of chemometrics in quantitative near-infrared (NIR) spectroscopy is reviewed from the standpoint of avoiding pitfalls that may lead to misleading or overly optimistic results. Using the NIR analysis of glucose in six-component mixture samples as an example, a set of guidelines is presented to help the analyst develop and implement a successful calibration.  相似文献   

3.
Salicylate is a hydrolysis product of salicylate-containing drugs (such as aspirin) in patients' blood. Monitoring of this ion in blood is helpful for diagnosing of overdosage of these drugs. The present paper describes an ion chromatography (IC) method developed for determination of total salicylate in human serum, in which a hulk acoustic wave (BAW) sensor was used as detector; 0.5 mmoI/L sodium carbonate (Na2CO3, pH 8.5) served as mobile phase. Interference in the determination was negligible. The method is simple, rapid, accurate, and precise. Serum salicylate was analyzed using both the proposed IC-BAW method and the classical Trinder spec-trophotometric method, and the results showed that the two method agreed well.  相似文献   

4.
Net analyte signal (NAS)-based multivariate calibration methods were employed for simultaneous determination of anthazoline and naphazoline. The NAS vectors calculated from the absorbance data of the drugs mixture were used as input for classical least squares (CLS), principal component and partial least squares regression PCR and PLS methods. A wavelength selection strategy was used to find the best wavelength region for each drug separately. As a new procedure, we proposed an experimental design-neural network strategy for wavelength region optimization. By use of a full factorial design method, some different wavelength regions were selected by taking into account different spectral parameters including the starting wavelength, the ending wavelength and the wavelength interval. The performance of all the multivariate calibration methods, in all selected wavelength regions for both drugs, was evaluated by calculating a fitness function based on the root mean square error of calibration and validation. A three-layered feed-forward artificial neural network (ANN) model with back-propagation learning algorithm was employed to model the nonlinear relationship between the spectral parameters and fitness of each regression method. From the resulted ANN models, the spectral regions in which lowest fitness could be obtained were chosen. Comparison of the results revealed that the net NAS-PLS resulted in lower prediction error than the other models. The proposed NAS-based calibration method was successfully applied to the simultaneous analyses of anthazoline and naphazoline in a commercial eye drop sample.  相似文献   

5.
The kinetic evolution of UV-visible absorption spectra of amoxicillin in the presence of copper(II) ions has been processed by the second-order multivariate methods parallel factor analysis (PARAFAC) and also by a novel approach based on partial least-squares with residual bilinearization (PLS/RBL). The latter one is employed for the first time to evaluate kinetic-spectral information. The mechanism of the analyte metal-catalyzed hydrolysis involves a reaction intermediate and a final reaction product, both with spectra which may allow for the determination of amoxicillin in human urine, even in the presence of unsuspected sample components. This is possible thanks to the second-order advantage exploited by the employed chemometric algorithms, among which PARAFAC and PLS/RBL gave the best results. Amoxicillin was determined in a series of spiked and real urine samples, which allowed to perform, respectively, a recovery study and a comparison with the reference high-performance liquid chromatographic technique. The best figures of merit were obtained with PLS/RBL, namely sensitivity, 0.5 AU L mg−1 (AU = absorbance units), analytical sensitivity, 500 L mg−1 and limit of detection, 6 mg L−1. Relative advantages and disadvantages of the employed algorithms are discussed.  相似文献   

6.
Near-infrared spectroscopy offers the potential for direct in situ analysis in complex biological systems. Chemical selectivity is a critical issue for such measurements given the extent of spectral overlap of overtone and combination spectra. In this work, the chemical basis of selectivity is investigated for a set of multivariate calibration models designed to quantify glucose, glucose-6-phosphate, and pyruvate independently in ternary mixtures. Near-infrared spectra are collected over the combination region (4,000–5,000 cm−1) for a set of 60 standard solutions maintained at 37 °C. These standard solutions are composed of randomized concentrations (0.5–30 mM) of glucose, glucose-6-phosphate, and pyruvate. Individual calibration models are constructed for each solute by using the partial least-squares (PLS) algorithm with optimized spectral range and number of latent variables. The resulting standard errors are 0.90, 0.72, and 0.32 mM for glucose, glucose-6-phosphate, and pyruvate, respectively. A pure component selectivity analysis (PCSA) demonstrates selectivity for each solute in these ternary samples. The concentration of each solute is also predicted for each sample by using a set of net analyte signal (NAS) calibration models. A comparison of the PLS and NAS calibration vectors demonstrates the chemical basis of selectivity for these multivariate methods. Selectivity of each PLS and NAS calibration model originates from the unique spectral features associated with the targeted analyte. Overall, selectivity is demonstrated for each solute with an order of sensitivity of pyruvate > glucose-6-phosphate > glucose. Figure Combination near-infrared spectroscopy allows selective analytical measurements for glucose, glucose-6-phosphate, and pyruvate in ternary mixtures owing to the uniqueness of the individual absorption spectra for each solute  相似文献   

7.
This article describes the use of the net analyte signal (NAS) concept and rank annihilation factor analysis (RAFA) for building two different multivariate standard addition models called “SANAS” and “SARAF.” In the former, by the definition of a new subspace, the NAS vector of the analyte of interest in an unknown sample as well as the NAS vectors of samples spiked with various amounts of the standard solutions are calculated and then their Euclidean norms are plotted against the concentration of added standard. In this way, a simple linear standard addition graph similar to that in univariate calibration is obtained, from which the concentration of the analyte in the unknown sample and the analytical figures of merit are readily calculated. In the SARAF method, the concentration of the analyte in the unknown sample is varied iteratively until the contribution of the analyte in the response data matrix is completely annihilated. The proposed methods were evaluated by analyzing simulated absorbance data as well as by the analysis of two indicators in synthetic matrices as experimental data. The resultant predicted concentrations of unknown samples showed that the SANAS and SARAF methods both produced accurate results with relative errors of prediction lower than 5% in most cases.  相似文献   

8.
《Analytica chimica acta》2004,502(2):221-227
The polymorphic purity of drug is of high pharmaceutical interest as it often dictates its bioavailability. In this work, we developed a rapid, efficient method for the characterization and determination of azithromycin polymorphs using near-infrared (NIR) spectrometry. The drug is characterized by comparison with a NIR spectral library that permits one to determine whether the amount of crystalline form contained in an amorphous azithromycin sample exceeds allowed levels. While the crystalline form is a hydrate, the amorphous form is anhydrous; however, the absorption of a small amount of moisture by the drug reduces the spectral differences between the two forms and hinders the establishment of an accurate calibration model. In this work, we determined the crystalline form by using a partial least-squares regression model (PLS1) for calibration and examined the influence of factors such as spectral treatment, wavelength range and moisture content on the results. The high correlation between the spectra for the two forms enabled the development of a PLS2 model for determining both species jointly. The proposed method was validated with a view to its subsequent use in the analytical control of azithromycin.  相似文献   

9.
Summary Lansoprazole is a new inhibitor of gastric proton secretion. An HPLC method for the quantitative determination of lansoprazole in serum is described. The method consists of liquid-liquid extraction and enrichment of the analyte and subsequent reverse-phase liquid chromatography with UV detection. The method is specific, sensitive and practical. It has been applied to serum from healthy volunteers. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

10.
Net analyte signal (NAS)-based method called HLA/GO was applied for the selectively determination of binary mixture of ethanol and water by quartz crystal nanobalance (QCN) sensor. A full factorial design was applied for the formation of calibration and prediction sets in the concentration ranges 5.5-22.2 μg mL−1 for ethanol and 7.01-28.07 μg mL−1 for water. An optimal time range was selected by procedure which was based on the calculation of the net analyte signal regression plot in any considered time window for each test sample. A moving window strategy was used for searching the region with maximum linearity of NAS regression plot (minimum error indicator) and minimum of PRESS value. On the base of obtained results, the differences on the adsorption profiles in the time range between 1 and 600 s were used to determine mixtures of both compounds by HLA/GO method. The calculation of the net analytical signal using HLA/GO method allows determination of several figures of merit like selectivity, sensitivity, analytical sensitivity and limit of detection, for each component. To check the ability of the proposed method in the selection of linear regions of adsorption profile, a test for detecting non-linear regions of adsorption profile data in the presence of methanol was also described. The results showed that the method was successfully applied for the determination of ethanol and water.  相似文献   

11.
Summary A novel method for the determination of N-acetylneuraminic acid (NANA) and N-glycolylneuraminic acid (NGNA) has been developed using high-performance capillary electrophoresis with UV detection at 195 nm, without pre or post-column derivatisation. The acids were separated in a 50-cm, fused-silica capillary (50μ i.d, 45.5-cm effective length) with Na2B4O7−Na2HPO4 buffer. The detection limit for NANA is a concentration of 9.6×10−6 M or, in terms of mass:3.879×10−14 mol (39 fmol). This method is applicable to determination of NANA in normal human serum. The results were also compared with those of the colorimetrie method.  相似文献   

12.
钙黄绿素分光光度法测定人血清白蛋白   总被引:2,自引:1,他引:2  
基于在pH为3.5的Clark-Lubs缓冲溶液条件下,人血清白蛋白与钙黄绿素结合使钙黄绿素的吸光度降低的原理,建立了钙黄绿素分光光度法测定人血清白蛋白测定方法,质量浓度在1.14~17.1 mg/L范围内,吸光度的降低与人血清白蛋白质量浓度呈线性关系,检出限为0.94 mg/L.  相似文献   

13.
Response surface methodology (RSM) was applied to the optimization of on-line solid-phase extraction (SPE) parameters, and an automated system of on-line SPE coupled with high-performance liquid chromatography (HPLC) with fluorescence detection was developed for the determination of puerarin and daidzein in human serum. The human serum sample of 50 μL was injected into a conditioned C18 SPE cartridge, and the matrix was washed out with acetonitrile-KH2PO4-triethylamine buffer (0.01 M, pH 7.4) (3:97, v/v) for 3 min at a flow rate of 0.25 mL/min. Then the target analytes were eluted and transferred to the analytical column. A chromatographic gradient elution was programmed with the mobile phase consisting of acetonitrile and KH2PO4-triethylamine buffer, and the analytes were determined with a fluorescence detector at excitation wavelength of 350 nm and emission wavelength of 472 nm, respectively. The proposed method presented good linear relations (0.85-170 μg/mL for puerarin and 0.2-40 μg/mL for daidzein), satisfactory precision (RSD < 8%), and accredited recovery (92.5-107.8%).  相似文献   

14.
Nie L  Ma H  Sun M  Li X  Su M  Liang S 《Talanta》2003,59(5):959-964
A simple, sensitive and selective chemiluminescence (CL) method was developed for the determination of cysteine. This method is based on that the weak CL of cysteine oxidized with cerium (IV) can be greatly enhanced by quinine. The calibration curve was linear over the range 3.5×10−9-3.5×10−6 M with a detection limit of 2.5×10−9 M (S/N=3). The RSD was found to be 8.4% by 10 replicate determinations of 2.9×10−8 M cysteine. Due to high sensitivity, the proposed method can be used directly to determine the total concentration of cysteine in human serum through simply diluting the sample for a thousand fold. The obtained result was in agreement with that given by amino acid autoanalyzer. The present method does not require any separation, showing a simpler analytical characteristic. The mechanism of the CL reaction was also discussed.  相似文献   

15.
The enantiomeric resolution of chiral compounds using HSA by means of affinity EKC (AEKC)-partial filling technique is the result of a delicate balance between different experimental variables such as protein concentration, running pH (background electrophoretic buffer, protein and compound solutions) and protein solution plug length. In this paper multivariate optimization approaches for chiral separation of four basic drugs (alprenolol, oxprenolol, promethazine and propranolol) using HSA as chiral selector in AEKC-partial filling technique are studied. The experimental conditions to achieve maximum resolution are optimized using the Box-Behnken experimental design. Partial least squares and pareto charts are used to analyse the main effects on the resolution. The experimental resolutions observed for all compounds studied in optimum conditions agree with the estimated values based on response surface models. The results obtained show that the range of experimental conditions that provided enantioresolution narrows as hydrophobicity of analytes decreases. This fact can be explained by assuming that hydrophobicity controls the interaction of basic compounds with HSA.  相似文献   

16.
The partial least squares regression method has been applied for simultaneous spectrophotometric determination of harmine, harmane, harmalol and harmaline in Peganum harmala L. (Zygophyllaceae) seeds. The effect of pH was optimized employing multivariate definition of selectivity and sensitivity and best results were obtained in basic media (pH > 9). The calibration models were optimized for number of latent variables by the cross-validation procedure. Determinations were made over the concentration range of 0.15-10 μg mL−1. The proposed method was validated by applying it to the analysis of the β-carbolines in synthetic quaternary mixtures of media at pH 9 and 11. The relative standard errors of prediction were less than 4% in most cases. Analysis of P. harmala seeds by the proposed models for contents of the β-carboline derivatives resulted in 1.84%, 0.16%, 0.25% and 3.90% for harmine, harmane, harmaline and harmalol, respectively. The results were validated against an existing HPLC method and it no significant differences were observed between the results of two methods.  相似文献   

17.
A comparative study about advantages and limitations of net analyte signal (NAS)-based methods (NBMs) and partial least squares (PLS) calibration in kinetic analysis has been performed. The different multivariate calibration methods were applied to the determination of binary mixtures of amoxycillin and clavulanic acid, by stopped-flow kinetic analysis. The reactions of oxidation of these compounds with cerium(IV), in sulphuric acid medium, were monitored by following the changes on the fluorescence of the oxidation products, in stopped-flow mode. The differences on the kinetic profiles obtained at λex=256 nm and λem=351 nm, were used to determine mixtures of both compounds by multivariate calibration of the kinetic data, using PLS-1, a modification of hybrid linear analysis (HLA) and net analyte pre-processing combined with classical least squares (NAP/CLS) methods. The NBMs allowed the selection of optimal time data regions by calculating the minimum error indicator function (EIF), improving the results and making NBMs very convenient for the analysis. In addition, the use of the net analyte signal concept allows the calculation of the analytical figures of merit, limit of detection (LOD), sensitivity and selectivity, for each component.  相似文献   

18.
A novel alternative for the simultaneous determination of compounds with similar structure is described, using the whole chemiluminescence-time profiles, acquired by the stopped-flow technique, in combination with mathematical treatments of multivariate calibration. The proposed method is based on the chemiluminescent oxidation of morphine and naloxone by their reaction with potassium permanganate in an acidic medium, using formaldehyde as co-factor. The whole chemiluminescence-time profiles, acquired using the stopped-flow technique in a continuous-flow system, allowed the use of the time-resolved chemiluminescence (CL) data in combination with multivariate calibration techniques, as partial least squares (PLS), for the quantitative determination of both opiate narcotics in binary mixtures.In order to achieve overcoat the additivity of the CL profiles and beside to obtain CL profiles for each drug the most separated as possible in the time, the optimum chemical conditions for the CL emission were investigated. The effect of common emission enhancers on the CL emission obtained in the oxidation reaction of these compounds in different acidic media was studied. The parameters selected were sulphuric acid 1.0 mol L−1, permanganate 0.2 mmol L−1 and formaldehyde 0.8 mol L−1. A calibration set of standard samples was designed by combination of a factorial design, with three levels for each factor and a central composite design. Finally, with the aim of validating the chemometric proposed method, a prediction set of binary samples was prepared. Using the multivariate calibration method proposed, the analytes were determined in synthetic samples, obtaining recoveries of 97-109%.  相似文献   

19.
《Analytical letters》2012,45(7):1389-1401
ABSTRACT

The use of multivariate spectrophotometric calibration is reported for the analysis of tablets containing the antibiotics sulfamethoxazole and trimethoprim, and a combination of the former two drugs with the analgesic phenazopyridine. The resolution of these mixtures has been accomplished without prior separation, derivatisation or use of nonaqueous solvents, with the aid of partial least-squares (PLS-1) regression analysis of electronic absorption spectral data. The analytes have been simultaneously determined with high accuracy and precision, and with no interference from tablet excipients.  相似文献   

20.
On-line coupled supercritical fluid extraction and gas chromatography (SFE-GC) has been utilized for the determination of PCBs and other organochlorine compounds in human milk and blood serum. The procedure involved preconcentration of the sample on C18-silica sorbent in an extraction cell: after precipitation of the proteins up to 20 ml of human milk was concentrated on 0.5 g of sorbent. Serum (up to 5 ml) was applied to the C18 material without pretreatment. Basic alumina was utilized as a selective adsorbent for lipids in the on-line SFE-GC system. The method was used to analyze milk and serum spiked with 0.5 and 10 ng of Aroclor 1260 and the results compared with those obtained by liquid–liquid extraction of serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号