首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an analytical investigation of the direct method of measurement of the source impedance of a linear time-variant source. The direct method yields a frequency-dependent effective source impedance which is routinely used in a time-invariant analysis to determine the insertion loss of two different acoustic loads applied to the same source. In such an analysis the strength of the source is assumed to be invariant with load. It is shown here that there is generally no precise correspondence between the effective source impedance as given by the direct method and the characteristics of the actual source. Furthermore, it is shown that the effective source impedance values given by the direct method are functions of the acoustic load and the location of the injected signal as used in the measurement. However, the effective source resistance is always found to be positive, in accordance with experimental measurements. In this regard the direct method is an improvement on the indirect method, where physically implausible negative resistance values are often found. Finally, it is shown that the effective impedance values as given by the direct method when used with a time-invariant analysis give rise to very accurate predictions of insertion loss, even when the strength of the actual time-variant source is allowed to vary with the acoustic load.  相似文献   

2.
Measurements have been made of the acoustic properties of a typical mineral wool fibrous material at temperatures up to 500C. In addition to acoustic impedance and propagation constant the flow resistance of the material was measured over the same temperature range. With use of a modified form of the Delany-Bazley empirical formula good agreement was found between predicted and measured values of the acoustic impedance and propagation constant at various temperatures up to 500°C.  相似文献   

3.
A new approach for measuring acoustic impedance is developed by using artificial neural network (ANN) algorithm. Instead of using impedance tube, a rectangular room or a box is simulated with known boundary conditions at some boundaries and an unknown acoustic impedance at one side of the wall. A training data basis for the ANN algorithm is evaluated by similar source method which was developed earlier by Too and Su [Too G-PJ, Su T-K. Estimation of scattering sound field via nearfield measurement by source methods. Appl Acoust. 1999;58:261-81 (SCI) (EI)] for the estimation of interior and exterior sound field. The training data basis is constructed by evaluating of acoustic pressure at a field point with various acoustic impedance conditions at one side of the wall. Then, the inversion for unknown acoustic impedance of a wall is performed by measuring several field data and substituting these data into ANN algorithm. The simulation result indicates that the prediction of acoustic impedance is very accurate with error percentage under 1%. In addition, one field point measurement in the present approach for acoustic impedance provides more straightforward and easier evaluation than that in the two point measurement of impedance tube.  相似文献   

4.
提出了基于半空间球面波函数叠加的声场重构方法,以重构含有限声阻抗边界半空间中声源直接辐射的声场.在半空间中多极子声源声压场的解析解的基础上,构造出以边界声阻抗为参量的半空间球面波函数的正交基;通过求逆获得半空间总声压解的基函数系数,同时也获得声源直接辐射声场即自由空间中的基函数系数,进而重构出声源直接辐射的声场.在边界...  相似文献   

5.
An experimental method for determining the aeroacoustic properties of side branch orifices allowing for any combination of grazing and bias flow is presented. The geometry studied, a T-junction, is treated as an active acoustic three-port. The passive properties, describing the reflection and transmission of an incident acoustic wave, are described by a system matrix while the active properties are described by a source vector. Expressions for the acoustic impedance under various mean flow and acoustic incidence configurations are developed. In addition, methods for identifying regions where the system can generate sound, by studying only the passive properties, are discussed. A self-sustained oscillation is triggered at one of the identified regions by coupling a resonant system to the three-port.  相似文献   

6.
The paper outlines the application of the equivalent surface source method to the analysis of the acoustic field in a partially lined duct with arbitrarily non-uniform wall impedance. Lined sections of the duct wall are represented by unsteady mass source singularities, the strengths of which are determined by solving integral equations. The method is applicable to lined walls of impedance which is non-uniform in the streamwise and/or circumferential direction. Numerical examples are given to show the effects of various design parameters on sound attenuation. Some advantageous features of circumferentially non-uniform wall impedance are demonstrated.  相似文献   

7.
The parameters used to characterize the acoustic behaviour of fibrous absorbent materials are usually the complex characteristic impedance and the complex wavenumber, which permit the calculation of the airflow resistance and vice versa. Different methods have been satisfactorily used by other authors in order to perform this characterization on the basis of a macroscopic modelling of the behaviour of these materials. In this paper, the suitability of this approach for predicting the acoustic response of absorbent materials to impulsive excitations is evaluated. The constant term of the airflow resistance equation for absorbent materials with different densities is quantified by means of a modified version of the impulse method. These values are then incorporated into one-dimensional acoustic calculations in order to predict the response of absorbing materials to pressure pulse excitation. The very good concordance observed between calculated and measured reflection and transmission coefficients shows the suitability of the proposed procedure for the characterization of absorbent materials.  相似文献   

8.
The optical tweezer has been found to have many biomedical applications in trapping macromolecules and cells. For the trapping mechanism, there has to be a sharp spatial change in axial optical intensity and the particle size must be much greater than the wavelength. Similar phenomenon may exist in acoustics. This work was undertaken to demonstrate theoretically that it is possible to acoustically trap particles near the focal point where most of the acoustic energy is concentrated if certain conditions are met. Acoustic force exerted on a fluid particle in ultrasonic fields is analyzed in a ray acoustics regime where the wavelength of acoustic beam is much smaller than the size of the particle. In order to apply the acoustical tweezer to manipulating macromolecules and cells whose size is in the order of a few microns or less, a prerequisite is that the ultrasound wavelength has to be much smaller than a few microns. In this paper, the analysis is therefore based on the field pattern produced by a strongly focused 100 MHz ultrasonic transducer with Gaussian intensity distribution. For the realization of acoustic trapping, negative axial radiation force has to be generated to pull a particle towards a focus. The fat particle considered for acoustic trapping in this paper has an acoustic impedance of 1.4 MRayls. The magnitude of the acoustic axial radiation force that has been calculated as the size of the fat particle is varied from 8lambda to 14lambda. In addition, both Fresnel coefficients at various positions are also calculated to assess the interaction of reflection and refraction and their relative contribution to the effect of the acoustical tweezer. The simulation results show that the feasibility of the acoustical tweezer depends on both the degree of acoustic impedance mismatch and the degree of focusing relative to the particle size.  相似文献   

9.
Two methods of calculating the effective impedance spectra of acoustically hard, randomly rough, two-dimensional surfaces valid for acoustic wavelengths large compared with the roughness scales have been explored. The first method uses the complex excess attenuation spectrum due to a point source above a rough boundary predicted by a boundary element method (BEM) and solves for effective impedance roots identified by a winding number integral method. The second method is based on an analytical theory in which the contributions from random distributions of surface scatterers are summed to obtain the total scattered field. Effective impedance spectra deduced from measurements of the complex excess attenuation above 2D randomly rough surfaces formed by semicylinders and wedges have been compared to predictions from the two approaches. Although the analytical theory gives relatively poor predictions, BEM-deduced effective impedance spectra agree tolerably well with measured data. Simple polynomials have been found to fit BEM-deduced spectra for surfaces formed by intersecting parabolas corresponding to average roughness heights between 0.25 and 7.5 m and for five incidence angles for each average height. Predicted effects of sea-surface roughness on sonic boom profiles and rise time are comparable to those due to turbulence and molecular relaxation effects.  相似文献   

10.
A method is described for measuring the acoustic properties of an absorbent material and a duct/nozzle system (with or without airflow) in which a high voltage spark discharge is used as an impulse source of sound. The cross-spectra of the incident, reflected and transmitted acoustic pressure transients are analyzed by way of a FFT digital processor in the form of complex transfer functions. These transfer functions have a direct relationship to the termination impedance and radiation directivity. The impulse method has been justified by comparisons that show excellent agreement with data obtained from existing methods (both experimental and theoretical).  相似文献   

11.
The pressure-particle velocity (PU) impedance measurement technique is an experimental method used to measure the surface impedance and the absorption coefficient of acoustic samples in situ or under free-field conditions. In this paper, the measurement uncertainty of the the absorption coefficient determined using the PU technique is explored applying the Monte Carlo method. It is shown that because of the uncertainty, it is particularly difficult to measure samples with low absorption and that difficulties associated with the localization of the acoustic centers of the sound source and the PU sensor affect the quality of the measurement roughly to the same extent as the errors in the transfer function between pressure and particle velocity do.  相似文献   

12.
In this letter, to improve the acoustic impedance measurement in a tube using the two-microphone method, a sound source technique is developed that is capable of generating incident sound waves of uniform intensity over the entire frequency range of interest. The basic principle is to use a digitally synthesized compensation input signal to achieve a flat response of the sound source provided by one or more loudspeakers. The present sound source technique has been demonstrated to be very effective and easily implemented with the current impedance tube testing systems.  相似文献   

13.
It is well known that the characterization of the acoustic source in an exhaust muffler system is of utmost importance in the proper evaluation of the acoustic performance of the muffler. However, in the literature, there are very few experimental studies on source characterization of a multi-cylinder internal combustion engine. This paper describes the use of a transfer function method (with a random excitation source) for measurement of the internal source impedance of an eight-cylinder engine under running conditions. The results obtained agree well with those obtained by the standing wave method by earlier investigators. The studies include the effect on the measured internal source impedance caused by variation of engine speed and load. The source impedance results obtained for the engine in operation are compared with those for the engine not in operation. The use of these results in the overall modeling of the exhaust system is described in an accompanying paper.  相似文献   

14.
Characteristics of radiation impedance and its inducing variation of electrical impedance for a controllable source have been investigated. An impedance-based error criterion has been proposed and its application to active noise control is demonstrated through a coil driven loudspeaker. A general formula of radiation impedance is derived for two control strategies, according to the criterion of total acoustic power output. The radiation impedances of some commonly used sound sources are calculated. We discuss in detail the relation between variation of the input electrical impedance and radiation impedance for the two control strategies. An AC-bridge circuit is designed to measure the weak variation of electrical impedance resulted from radiation impedance. The input electrical impedance of a loudspeaker was measured and the experimental result is consistent with that of theoretical analysis. An impedance-based error criterion is proposed since the AC-bridge relative output is unique for a certain control strategy. The implementation of this criterion applied to an active control system is analyzed by simulations. An analogue control system is set up and experiments are carried out in a semi-anechoic chamber to verify the new control approach.  相似文献   

15.
通过流作用下穿孔板的声阻抗   总被引:3,自引:1,他引:2       下载免费PDF全文
陈志响  季振林 《声学学报》2020,45(2):235-246
穿孔元件在进排气消声器中广泛使用,气体流动对穿孔元件声阻抗具有较大的影响。为了获得更加精确的穿孔声阻抗模型,使用三维时域CFD方法计算通过流作用下穿孔的声阻抗。探究了通过流作用下穿孔声阻抗的获取方法,并且将无量纲小孔声阻抗的预测值与已发表的实验测量值进行了对比,两者吻合较好。分析了小孔中的通过流马赫数Mo (0.05~0.20)、穿孔的分布形式、小孔的直径dh (2~5 mm),穿孔板的厚度t (0.8~2 mm)和穿孔率φ(4.51%~24.93%)对无量纲声阻抗的影响规律,并且通过不同参数的非线性回归分析得到了通过流作用下声阻抗的模型。作为工程计算的应用,利用Jing&Sun的声阻抗模型和本文声阻抗模型计算了横流式穿孔管消声器的传递损失,与实验测量结果比较表明,本文模型具有较高的准确性。   相似文献   

16.
低密度水泥在低压易漏复杂井固井中的广泛应用使得声阻抗类测井方法难以准确、有效的评价固井质量。基于套管中传播的弯曲型Lamb对套后介质的声学参数和胶结状况的敏感性,本文通过理论计算和实验测量研究了不同频率下弯曲型Lamb 波衰减与水泥声学性质的关系,较低的工作频率会使得不同水泥阻抗下的衰减动态变化范围降低,且对水泥环第一界面的窜槽厚度也有很高的灵敏度;利用套管外胶结流体和固体时衰减率的差异,还可较好的区分套管外声阻抗接近的流体和固体;但弯曲型Lamb波的同一个衰减率值可与两个水泥声阻抗值相对应,因此需通过建立弯曲型Lamb波的衰减与水泥声阻抗的图版以提高低密度水泥固井质量评价的可信度。本文的计算分析结果对进一步应用弯曲型Lamb评价低密度水泥具有指导意义。  相似文献   

17.
Saffar S  Abdullah A 《Ultrasonics》2012,52(1):169-185
The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the obtained acoustic impedances do not necessarily correspond to a nowadays available material. Consequently, the values of the acoustic impedances are switched to the nearest values in a large material database. The switched values of the acoustic impedances do not generally give efficient transmission coefficients. Therefore, we proposed, in a second step, the use of a genetic algorithm (GA) to select the best acoustic impedances for matching layers from the material database for a narrow band ultrasonic transducer that work at frequency below the 2.5 MHz by considering attenuation. However this bank is rich, the results get better. So the accuracy of the propose method increase by using a lot of materials with exact data for acoustic impedance and their attenuation, especially in high frequency. This yields highly more efficient transmission coefficient. In fact by using increasing number of layer we can increase our chance to find the best sets of materials with valuable both in acoustic impedance and low attenuation. Precisely, the transmission coefficient is almost equal to unity for the all studied cases. Finally the effect of thickness on transmission coefficient is investigated for different layers. The results showed that the transmission coefficient for air media is a function of thickness and sensitive to it even for small variation in thickness. In fact, the sensitivity increases when the differences of acoustic impedances to be high (difference between PZT and air).  相似文献   

18.
Prediction of intake noise of an automotive engine in run-up condition   总被引:1,自引:0,他引:1  
It is very important to predict the radiated noise from the engine intake system for the effective noise control and virtual prototyping of in-cavity and outdoor noise of a vehicle. To this end, one should precisely measure the in-duct acoustic source parameters of the intake system, viz., source strength and source impedance. Usually, the noise radiation characteristics need to be expressed as a function of engine speed. In this study, acoustic source parameters of an engine intake system under engine run-up condition were measured by using the direct method. Direct method employed two external loudspeakers, turned on simultaneously, and three microphones for the separation of upstream and downstream wave components. It was noted that the frequency spectra of source impedance hardly changes with the increase of engine speed. Utilizing this fact, source strength under the engine run-up condition was calculated by assuming invariant source impedance. Predicted insertion loss and radiated sound pressure level using the measured source parameters were compared with those of measured data and predicted data using several idealized source models, which have been adopted for the calculations. A reasonably good agreement was observed between measured sound spectra at the intake orifice and predicted one using the measured source data. It was shown that the source data obtained by the present method yielded a far better prediction accuracy than those by the idealized source models.  相似文献   

19.
This paper presents improved equivalent circuits for the analysis and design of acoustic plate wave devices. The method uses a mixed equivalent circuit for the interdigital transducer consisting of both active and passive sections placed on the surface of a piezoelectric plate. The values of the various circuit elements are obtained by carrying out a best fit between theoretical and experimental frequency dependence of the real and imaginary parts of transducer input impedance. Knowledge of the equivalent circuit parameters allows one to optimize design of the devices. The method has been successfully employed for the design of one-port shear-horizontal wave resonators on Y-X lithium niobate plates. The proposed method can also be utilized for determining acoustic wave velocity with high accuracy.  相似文献   

20.
We have previously introduced liquid-contact scanning impedance imaging (SII) as a high resolution, high contrast method for imaging electrical impedance. This technique has shown its potential to measure the impedance distribution of biological tissues. In this paper, a numerical model is developed to describe the SII system based on the finite difference method. Good correspondence can be observed when comparing data simulated using the model with experimental data. The relationships between measurable resolution and system parameters such as height are shown in both simulation results and measurements. It is shown that the numerical model provides a good explanation for experimental results and can also assist in the design of the dual-conductor impedance probe used in this imaging method. Model predictions on both the conductor spacing and the resistor R used in the system have been made indicating their relationships to an empirical notion of resolution. The simulation result of the conductor spacing also gives an insight to the function of the dual-conductor probe. Based on this model, an optimum probe design can be obtained by balancing ultimate resolution with the signal-to-noise ratio by adjusting spacing and resistor values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号