首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Electroanalysis》2002,14(24):1691-1698
Three different recently synthesized aza‐thioether crowns containing a 1,10‐phenanthroline sub‐unit (L1–L3) and a corresponding acyclic ligand (L4) were studied to characterize their abilities as silver ion ionophores in PVC‐membrane electrodes. Novel conventional silver‐selective electrodes with internal reference solution (CONISE) and coated graphite‐solid contact electrodes (SCISE) were prepared based on one of the 15‐membered crowns containing two donating S atoms and two phenanthroline‐N atoms (L1). The electrodes reveal a Nernstian behavior over wide Ag+ ion concentration ranges (1.0×10?5?1.0×10?1 M for CONISE and 5.0×10?8?4.0×10?2 M for SCISE) and very low limits of detection (8.0×10?6 M for CONISE and 3.0×10?8 M for SCISE). The potentiometric response is independent from pH of the solution in the pH range 3.0–8.0. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations. The electrodes can be used for at least 2 months (for CONISE) and 4 months for (SCISE) without any appreciable divergence in potentials. The electrodes were used as an indicator electrode in the potentiometric titration of Ag+ ion and in the determination of silver in photographic emulsions and in radiographic and photographic films.  相似文献   

2.
New polymeric membrane (PME) and coated graphite (CGE) samarium(III)-selective electrodes were prepared based on isopropyl 2-[(isopropoxycarbothioyl) disulfanyl]ethanethioate as a suitable neutral ionophore. The electrodes exhibit Nernstian slopes for Sm3+ ions over wide concentration ranges (1.0×10−5 to 1.0×10−1 M for PME and 1.0×10−6 to 1.0×10−1 M for CGE). The PME and CGE have limits of detection of 3.1×10−6 and 5.0×10−7 M, respectively, and response times of about 20 s. The potentiometric responses are independent of the pH of the test solution in the pH range 4.0-7.0. The proposed electrodes revealed good selectivities over a wide variety of other cations including alkali, alkaline earth, transition and heavy metal ions. The electrodes were successfully applied to the recovery of Sm3+ ion from tap water samples and also, as an indicator electrode, in potentiometric titration of samarium(III) ions.  相似文献   

3.
A new nano-sized silver(I) ion-imprinted polymer (IIP) was prepared via precipitation copolymerization using ethyleneglycol dimethacrylate, as a cross-linking agent in the presence of Ag+ and an aza-thioether crown containing a 1,10-phenanthroline subunit as a highly selective complexing agent. The imprint silver(I) ion was removed from the polymeric matrix using a 1.0 M HNO3 solution. The resulting powder material was characterized using IR spectroscopy and scanning electron microscopy. The SEM micrographs showed colloidal nanoparticles of about 52 nm and 75 nm in diameter and slightly irregular in shape for leached and unleached IIPs, respectively. The optimal pH for quantitative enrichment was 6.0 and maximum sorbent capacity of the prepared IIP for Ag+ was 18.08 μmol g−1. The relative standard deviation and limit of detection (LOD = 3Sb/m) for flame atomic absorption spectrometric determination of silver(I) ion, after its selective extraction by the prepared IIP nanobeads, were evaluated as 2.42% and 2.2 × 10−8 M, respectively. The new Ag+-IIP was also applied as a suitable sensing element to the preparation of highly selective and sensitive voltammetric and potentiometric sensors for ultra trace detection of silver(I) ion in water samples, with limits of detection of 9.0 × 10−10 and 1.2 × 10−9 M, respectively.  相似文献   

4.
The potentiometric behavior of coated wire electrodes based on dodecylbenzenesulfonate-doped polypyrrole (PPy-DBS) and hyamine as ion exchanger was investigated. The PPy-DBS was prepared electrochemically by anodic polymerization of pyrrole in the presence of DBS ions in aqueous solution and used as ionophore for construction of the sensor. Two types of coated wire electrodes made of PVC-PPy-DBS and PVC-Hyamine-DBS, plasticized with ortho-nitrophenyloctylether (o-NPOE) showed the Nernstian behavior (with respective calibration slopes of about 58 and 60 mV per decade) over the DBS concentration range of 3.0×10−6 to 1.1×10−3 M and 5.0×10−6 to 1.3×10−3 M, respectively. The influence of membrane composition, type of plasticizer, and pH of test solution on the potentiometric responses of the two electrodes was investigated. The potentiometric response was independent of the pH of test solution in the range 3-10. The response time of electrodes was fast (10 s for both types of electrode), and they can be used for at least 3 months without any significant change in potential. The proposed electrodes revealed very good selectivity for DBS ion over diverse inorganic and organic anions. The potentiometric selectivity coefficients for the PPy-DBS based electrode revealed a significant improvement as compared to the electrode made by conventional Hyamine-DBS (Hya-DBS) anion exchanger. The proposed electrode was used for determination of DBS ion in some commercial detergents. The results of the potentiometric determinations were in satisfactory agreement with those obtained by a standard method (two-phase titration).  相似文献   

5.
The performance of calix[2]furano[2]pyrrole and related compounds used as neutral carriers for silver selective polymeric membrane electrode was investigated. The silver ion-selective electrode based on calix[2]furano[2]pyrroles gave a good Nernstian response of 57.1 mV per decade for silver ion in the activity range 1×10−6 to 1×10−2 M. The present silver ion-selective electrode displayed very good selectivity for Ag+ ion against alkali and alkaline earth metal ions, NH4+, and H+. In particular, the present Ag+-selective electrode exhibited very low responses towards Hg2+ and Pb2+ ions. The potentiometric selectivity coefficients of the silver ion-selective electrode exhibited a strong dependence on the solution pH. In particular, the response of the electrode to the Hg2+ activity was greatly diminished at pH 2.5 compared to that at pH 5.0. Overall, the performance of the present silver ion-selective electrode based on the ionophore, calix[2]furano[2]pyrrole, is very comparable to that of the electrode prepared with the commercially available neutral carrier in terms of slope, linear range, and detection limits.  相似文献   

6.
Karami H  Mousavi MF 《Talanta》2004,63(3):743-749
A new dodecyl benzene sulfonate (DBS) ion-selective electrode based on polyaniline is reported. The films of polyaniline doped with DBS were prepared electrochemically on platinum electrodes in the solution containing 1.0×10−3 M aniline and 7.0×10−3 M DBS. The optimum potentiometric response was obtained for prepared polymeric film by passing electricity of 7.5 C cm−2. The electrode exhibits an excellent Nernstian slope of −59.1±0.3 mV per decade for DBS ion over a wide concentration range (5.0×10−6 to 4.1×10−3 M) with a low detection limit (1.0×10−6 M). The proposed electrode revealed good sensitivities for DBS ion over a wide variety of other anions and can be used in the wide pH range of 5-10. It shows good stability, good reproducibility, wide range of pH independency and fast response (<20 s) without using internal solution. This electrode could be used for the determination of DBS in the real samples.  相似文献   

7.
Ten Ag+-selective ionophores have been characterized in terms of their potentiometric selectivities and complex formation constants in solvent polymeric membranes. The compounds with π-coordination show much weaker interactions than those with thioether or thiocarbamate groups as the coordinating sites. Long-term studies with the best ionophores show that the lower detection limit of the best Ag+ sensors can be maintained in the subnanomolar range for at least 1 month. The best ionophores have also been characterized in fluorescent microspheres. The so far best lower detection limits of 3 × 10−11 M (potentiometrically) and 2 × 10−11 M Ag+ (optically) are found with bridged thiacalixarenes.  相似文献   

8.
A highly selective poly(vinyl chloride) (PVC) membrane electrode based on butane -2,3-dione bis(salicylhydrazonato) zinc(II) [Zn (BDSH)] complex as carrier for thiocyanate-selective electrode is reported. The influence of membrane composition, pH and possible interfering anions were investigated on the response properties of the electrode. The sensor responds to thiocyanate in linear range from 1.0 × 10−6 to 1.0 × 10−1 M with a slope −56.5 ± 1.1 mV decade−1, over a wide pH range of 3.5-8.5. The limit of detection of the electrode was 7.0 × 10−7 M SCN. Selectivity coefficients determined with fixed interference method (FIM) indicate a good discriminating ability towards SCN ion in comparison to other anions. The proposed sensor has a fast response time of about 5-15 s and can be used for at least 3 months without any considerable divergence in potential. It was applied as indicator electrode in titration of thiocyanate with Ag+ and in potentiometric determination of thiocyanate in saliva and urine samples.  相似文献   

9.
Potentiometric sensor based on glassy carbon electrode covered with polyaniline and neutral carrier, e.g. thiacalix[4]arene containing pyridine fragments in the substituents in the lower rim has been developed and applied for determination of Ag+ ions in the range from 1.0 × 10−2 to 5.0 × 10−7 M with the response time of 12 s. The presence of thiacalixarene in the surface layer improves the reversibility and selectivity of the signal towards transient metal ions. The potentiometric selectivity coefficients were determined for various measurement conditions. As shown, the pH control and the use of NaF as a masking agent fully eliminate the interfering effect of Hg2+ and Fe3+ ions, respectively. The reaction of Ag+ with thiacalixarene was proved by the investigation of the extraction of picrate complexes of transient metals in the organic phase. The potentiometric sensor developed was successfully used for the potentiometric determination of silver sulfathiazole (Argosulfan™).  相似文献   

10.
Potentiometric thiocyanate-selective sensors based on the use of three synthesized di-, tetra-, and hexa-imidepyridine derivatives as novel anionic neutral ionophores in plasticized poly(vinyl chloride) (PVC) membranes are described. The sensors exhibit significantly enhanced response towards thiocyanate ions over the concentration range 5×10−6 to 1.0×10−2 M with a lower detection limit of 0.3 μg ml−1 and slopes ranging from −55.6 to −58.3 mV per decade. Fast and stable response, good reproducibility, long-term stability, applicability over a wide pH range (2-8) and high selectivity for SCN ion in the presence of 18 common anions are demonstrated. The sensors are used for direct potentiometric measurements of thiocyanate ions over the concentration range 0.2-580 μg ml−1 and for monitoring sequential titration of some metal ions (e.g. Ag+, Tl+, Cu2+, Pb2+) in binary and ternary mixtures. Sequential binding of these metal ions with SCN ensures share stepwise titration curves with consecutive end point breaks at the equivalent points. Recoveries of 98.5-99.1±0.3% are obtained for metal ion concentrations of 0.06-4 mg ml−1.  相似文献   

11.
A new functionalized nanoporous silica gel with dipyridyl group (DPNSG) was synthesized. Then, the potentiometric response of the copper(II) ion was investigated at a carbon paste electrode chemically modified with this newly designed functionalized nanoporous silica gel. The electrodes with DPNSG proportions of 15.0% (w/w) demonstrated very stable potentials. Calibration plots with Nernstian slopes for Cu2+ were observed, 28.4 (±1.0) mV decade−1, over a wide linear concentration range (1.0 × 10−7 to 1.0 × 10−2 M). The electrode exhibited a detection limit of 8.0 × 10−8 M. Moreover, the selectivity coefficients measured by the match potential method in acetate buffer, pH 5.5, were investigated. The electrode presented a response time of ∼50 s, high performance, high sensitivity in a wide range of cation activities and good long-term stability (more than 9 months). The method was satisfactory and was used to determine the copper ion concentration in waste waters, contaminated by this metal.  相似文献   

12.
A novel thia-aza substituted macrocyclic diamide 7,10,13-triaza-1-thia-4,16-dioxa-20,24-dimethyl-2,3;17,18-dibenzo-cyclooctadecane-6,14-dione (L) was synthesized and stability of its complexes with several alkaline earth, transition and heavy metal ions were studied conductometrically in methanol solution. The resulting 1:1 Ag+L complex found to be the most stable one among all cation complexes studied. The optimized structures of the ligand and its Ag+ complex were also investigated. Based on the preliminary results thus obtained, L was used as an excellent sensing material to prepare polymeric membrane (PME) and coated graphite (CGE) silver-selective electrodes. The electrodes revealed a Nernstian behavior over wide Ag+ ion concentration ranges (i.e., 2.0 × 10?6–1.0 × 10?2 M for PME and 5.0 × 10?7–1.0 × 10?2 M for CGE). The potentiometric responses were independent of pH of the test solution in the range 2.9–6.8. The electrodes possessed advantages of low resistance, relatively fast response time, long lifetimes and, especially, good selectivity relative to a wide variety of other cations. The electrodes were used, as indicator electrodes, in the potentiometric titration of silver ion and in the determination of Ag+ ion in waste water, photographic emulsion, radiographic and photographic films and dental amalgams.  相似文献   

13.
Nine monoazathiacrown ethers have been synthesized and explored as ionophores for polymeric membrane Ag+-selective electrodes. Potentiometric responses reveal that the ion-selective electrodes (ISEs) based on 2,2′-thiodiethanethiol derivatives can exhibit excellent selectivities toward Ag+. The plasticized poly(vinyl chloride) membrane electrode using 22-membered N2S5-ligand as ionophore has been characterized and its logarithmic selectivity coefficients for Ag+ over most of the interfering cations have been determined as <−8.0. Under optimal conditions, a lower detection limit of 2.2 × 10−10 M can be obtained for the membrane Ag+-ISE.  相似文献   

14.
The feasibility of a newly synthesized Rh(III) complex, Rh[(trpy)(bpy)Cl](PF6)2, as a novel ionophore for the preparation of anion-selective polymeric membrane electrodes was tested. The ionophore exhibited anti-Hofmeister behavior with enhanced potentiometric selectivity toward thiocyanate ion compared to other anions. The influence of some experimental parameters such as membrane composition, nature and amount of plasticizer and additive and concentration of internal solution on the potential response of the SCN sensor were investigated. The electrode exhibits a Nernstian response for SCN over a wide concentration range (1.0 × 10−5 to 1.0 × 10−1 M) with a slope −58.7 ± 0.5 mV per decade and a detection limit of 4.0 × 10−6 M (0.23 ppm). It could be used in a pH range of 3.0-8.0 and has a fast response time of about 15 s. The proposed sensor was used for the determination of thiocyanate ions in real samples such as urine and saliva of smokers and nonsmokers and, as an indicator electrode, in potentiometric titrations of SCN ion.  相似文献   

15.
Choi Y  Kim H  Lee JK  Lee SH  Lim HB  Kim JS 《Talanta》2004,64(4):975-980
Four thiacalix[4]biscrown ethers with 1,3-alternate conformation were examined for the potentiometric responses in poly(vinyl chloride) membrane electrodes. Their potentiometric selectivities toward potassium and cesium ions over other alkali, alkaline earth, and transition metal ions were measured by the fixed interference method (FIM). Among the ionophores, 1,3-alternate thiacalix[4]biscrown-6,6 showed a high selectivity for cesium over potassium ion and so was optimized as a Cs+-selective electrode. The electrode exhibited a linear response with a near Nernstian slope of 57.6 mV per decade in the concentration range of 1.0×10−6 to 3.2×10−2 M. It was suitable for use in aqueous solution in a wide range of pH 2.5-12.5 and had a fast response time of ca. 5 s. On the basis of 1,3-alternate thiacalix[4]biscrown-6,6, the electrode has a wide linear range and selectivity for cesium ion over potassium ion better than those previously reported with other ionophores.  相似文献   

16.
Two new PVC membrane electrodes that are highly selective to Ag(I) ions were prepared using (L1) calyx[4]arene (L2) as two suitable neutral carriers. The silver(I) ion selective electrodes exhibit a good response for silver ion over a wide concentration range of 1.0 × 10−1 to 4.2 × 10−6 M (L1) and 1.0 × 10−1 to 6.5 × 10−6 M (L2) with a Nernstian slope of 60 mV per decade (L1) and 58 mV per decade (L2) at 25°C, and was found to be very selective, precise, and usable within the pH range 4.0–8.0. They have a response time of <15 s and can be used for at least 3 months without any measurable divergence in potential. The proposed sensors show a fairly good discriminating ability towards Ag+ ion in comparison to some hard and soft metal ions. The electrodes were used as indicator electrodes in the potentiometric titration of silver ion and in the determination of Ag+ in photographic emulsion and radiographic and photographic films. Published in Russian in Elektrokhimiya, 2009, Vol. 45, No. 7, pp. 862–868. The article is published in the original.  相似文献   

17.
Somer G  Sezer S  Doğan M  Kalaycı S  Sendil O 《Talanta》2011,85(3):1461-1465
A new borate ion selective electrode using solid salts of Ag3BO3, Ag2S and Cu2S has been developed. Detailed information is provided concerning the composition, working pH and conditioning of the electrode. An analytically useful potential change occurred from 1 × 10−6 to 1 × 10−1 M borate ion. The slope of the linear portion was 31 ± 2 mV/10-fold changes in borate concentration. The measurements were made at constant ionic strength (0.1 M NaNO3) and at room temperature. The effect of Cl, Br, NO3, SO=4, H2PO4 anions and K+, Na+, Cu2+, Ag+, Ca2+ cations on borate response is evaluated and it was found that only Ag+ had a small interference effect. The lifetime of the electrode was more than two years, when used at least 4-5 times a day, and the response time was about 20-30 s. Borate content in waste water of borax factory, tap water of a town situated near to the borax factory and city tap water far from these mines were also determined. The validation was made with differential pulse polarography for the same water sample, and high consistency was obtained.  相似文献   

18.
Comparative studies of the potentiometric behavior of three mercapto compounds [2-((5-mercapto-1,3,4-thiadiazol-2-ylimino)methyl)phenol] (MTMP), [5-(2-methoxy benzylidene amino)-1,3,4-thiadiazole-2-thiol] (MBYT) and [5-(pyridin-2-ylmethyleneamino)-1,3,4-thiadiazole-2-thiol] (PYTT) self-assembled on gold nanoparticles (GNPs) as ionophores in carbon paste electrodes (CPEs) have been made. These mercapto thiadiazole compounds were self-assembled onto gold nanoparticles and then incorporated within carbon paste electrode. The self-assembled ionophores exhibit a high selectivity for copper ion (Cu2+), in which the sulfur and nitrogen atoms in their structure play a role as the effective coordination donor site for the copper ion. These carbon paste electrodes were applied as indicator electrodes for potentiometric determination of copper ions. The sensor based on PYTT exhibits the working concentration range of 4.0 × 10−9 to 7.0 × 10−2 M and a Nernstian slope of 28.7 ± 0.3 mV decade−1 of copper activity. The detection limit of electrode was 1.0 × 10−9 M and potential response was pH independent across the range of 3.0-6.5. It exhibited a quick response time of <5 s and could be used for a period of 45 days. The ion selectivity of this electrode for Cu2+ was over 104 times that for other metal cations. The application of prepared sensors has been demonstrated for the determination of copper ions in spiked water and natural water samples.  相似文献   

19.
A PVC membrane electrode for copper ion based on 1,3-dithiane,2-(4-methoxy phenyl) as ionophore and o-nitrophenyl octyl ether as a plasticizer is demonstrated. The electrode exhibits a Nernstian slope of 29.5±1 mV per decade in a linear range of 3.0×10−6 to 5.0×10−2 M for Cu2+ ion. The detection limit of this electrode is 1.0×10−6 mol/l. This sensor has a very short response time of about 5 s and could be used in a pH range of 4.0-7.0. High selectivity was obtained over a wide variety of metal ions. The proposed electrode was successfully applied as an indicator electrode for the potentiometric titration of copper ion with EDTA and for the direct determination of copper in river water.  相似文献   

20.
Wang J  Wang L  Han Y  Jia J  Jiang L  Yang W  Sun Q  Lv H 《Analytica chimica acta》2007,589(1):33-38
Novel polyvinyl chloride (PVC) membrane electrodes based on triheptyl dodecyl ammonium iodide have been developed. In the presence of 12.5 mM H2O2, these electrodes are capable of determining molybdate(VI) ion. The electrodes exhibit near-Nernstian responses over a wide concentration range (2.0 × 10−6 to 5.0 × 10−3 M). The proposed electrodes demonstrate satisfying selectivity for molybdate(VI) ion in the presence of a wide variety of anions other than iodide, and can be used in the pH range 5.0-7.0. Moreover, the electrodes show an average response time of 2-3 min and can be used over a period of 2 months without any significant deviation being observed. In the light of our results, the response mechanism of the electrode is discussed and HMoO2(O2)2 is suggested as the response ion. The proposed electrode has been used to measure molybdenum in ore samples, and the results were in agreement with those obtained by means of ICP analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号