首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When a fatigue crack is nucleated and propagates into the vicinity of the notch, the crack growth rate is generally higher than that can be expected by using the stress intensity factor concept. The current study attempted to describe the crack growth at notches quantitatively with a detailed consideration of the cyclic plasticity of the material. An elastic–plastic finite element analysis was conducted to obtain the stress and strain histories of the notched component. A single multiaxial fatigue criterion was used to determine the crack initiation from the notch and the subsequent crack growth. Round compact specimens made of 1070 steel were subjected to Mode I cyclic loading with different R-ratios at room temperature. The approach developed was able to quantitatively capture the crack growth behavior near the notch. When the R-ratio was positive, the crack growth near a notch was mainly influenced by the plasticity created by the notch and the resulted fatigue damage during crack initiation. When the R-ratio was negative, the contact of the cracked surfaces during a part of a loading cycle reduced the cyclic plasticity of the material near the crack tip. The combined effect of notch plasticity and possible contact of cracked surface were responsible for the observed crack growth phenomenon near a notch.  相似文献   

2.
The time-dependent strain cyclic characteristics and ratchetting behaviours of SS304 stainless steel were investigated by uniaxial/multiaxial cyclic loading tests at room and elevated temperatures (350 and 700 °C). The effects of loading rate, peak/valley strain or stress holds, ambient temperature and non-proportional loading path on the cyclic softening/hardening and ratchetting behaviours of the material were discussed. It is shown that: the cyclic deformation of the material presents remarkable time-dependence at room temperature and 700 °C; the cyclic hardening feature and ratchetting strain depend significantly on straining or stressing rate, hold-time, ambient temperature and the non-proportionality of loading path; the time-dependent ratchetting is resulted from the slight opening of hysteresis loop and visco-plasticity together, and the viscosity is a dominating factor at 700 °C; at 350 °C, abnormal rate-dependence and quick shakedown of ratchetting are observed due to the dynamic strain aging of the material at this temperature. Some significant conclusions are obtained, which are useful to construct a constitutive model to describe the time-dependent ratchetting behaviour of the material. It is also stated that the unified visco-plastic constitutive model discussed here cannot provide reasonable simulation to the time-dependent ratchetting at 700 °C, especially to that with certain peak/valley stress hold, since the effect of the high viscosity on time-dependent ratchetting cannot be properly described by using a unified visco-plastic flow rule.  相似文献   

3.
In this paper, a simplified thermodynamics analysis of cyclic plastic deformation is performed in order to establish an energy transition relation for describing the elastic–plastic stress and strain behavior of the notch-tip material element in bodies subjected to multiaxial cyclic loads. Based on the thermodynamics analysis, it is deduced that in the case of elastic–plastic deformation, Neuber’s rule inevitably overestimates the actual stress and strain at the notch tip, while the equivalent strain energy density (ESED) method tends to underestimate the actual notch-tip stress and strain. According to the actual energy conversion occurring in the notch-tip material element during cyclic plastic deformation, a unified expression for estimating the elastic–plastic notch stress–strain responses in bodies subjected to multiaxial cyclic loads is developed, of which Neuber’s rule and the ESED method become two particular cases, i.e. upper and lower bound limits of the notch stress and strain estimations. This expression is verified experimentally under both proportional and non-proportional multiaxial cyclic loads and a good agreement between the calculated and the measured notch strains has been achieved. It is also shown that in the case of multiaxial cyclic loading, the unified expression distinctly improves the accuracy of the notch-tip stress–strain estimations in comparison with Neuber’s rule and the ESED method. The unified expression of the notch stress–strain calculation developed in this paper can thus provide a more logical approximate approach for estimating the elastic–plastic notch-tip stress and strain responses of components subjected to lengthy multiaxial cyclic loading histories for local strain approach-based fatigue-crack-initiation life prediction.  相似文献   

4.
In Part 2 of this study, extensive deformation tests were carried out on the nickel-base polycrystalline superalloy IN738LC under isothermal and anisothermal conditions between 450 and 950 °C. Under the isothermal conditions, the material showed almost no rate/time-dependency below 700 °C, while it showed distinct rate/time-dependency above 800 °C. Regarding the cyclic deformation, slight cyclic hardening behavior was observed when the temperature was below 700 °C and the imposed strain rate was fast, whereas in the case of the temperature above 800 °C or under slower strain rate conditions, the cyclic hardening behavior was scarcely observed. Unique inelastic behavior was observed under in-phase and out-of-phase anisothermal conditions: with an increase in the number of cycles, the stress at higher temperatures became smaller and the stress at lower temperatures became larger in absolute value although the stress range was approximately constant during the cyclic loading. In other words, the mean stress continues to evolve cycle-by-cycle in the direction of the stress at lower temperatures. Based on the experimental results, it was assumed that evolution of the variable Y that had been incorporated into a kinematic hardening rule in Part 1 of this study is active under higher temperatures and is negligible under lower temperatures. The material constants used in the constitutive equations were determined with the isothermal data, and were expressed as functions of temperature empirically. The extended viscoplastic constitutive equations were applied to the anisothermal cyclic loading as well as the monotonic tension, stress relaxation, creep and cyclic loading under the isothermal conditions. It was demonstrated that the present viscoplastic constitutive model was successful in describing the inelastic behavior of the material adequately, including the anomalous inelastic behavior observed under the anisothermal conditions, owing to the consideration of the variable Y.  相似文献   

5.
IntroductionMuchworkhasbeencarriedouttoinvestigatetheinfluenceoforientationandstrainrateonthemechanicalpropertyofnickel_basesinglecrystalsuperalloys .Inparticular,theanomalousyieldingbehavior,tension/compressionasymmetryandorientationdependencehavebeen…  相似文献   

6.
A viscoplastic constitutive model for Hastelloy-X single crystal material is developed based on crystallographic slip theory. The constitutive model was constructed for use in a viscoplastic self-consistent model for isotropic Hastelloy-X polycrystalline material, which has been described in a recent publication. It is found that, by using the slip geometry known from the metallurgical literature, the anisotropic response can be accurately predicted. The model was verified by using tension and torsion data taken at 982°C (1800°F). The constitutive model used on each slip system is a simple unified visoplastic power law model in which weak latent interaction effects are taken into account. The drag stress evolution equations for the octahedral system are written in a hardening/recovery format in which both hardening and recovery depend on separate latent interaction effects between the octahedral crystallographic slip systems. The strain rate behavior of the single crystal material is well correlated by the constitutive model in uniaxial and torsion tests, but it is necessary to include latent information effects between the octahedral slip systems in order to obtain the best possible representation of biaxial cyclic strain rate behavior. Finally, it was observed that the single crystal exhibited dynamic strain aging at 871°C (1600°F). Similar dynamic strain aging occurs at 649°C (1200°F) in the polycrystalline version of the alloy.  相似文献   

7.
A new kinematic hardening model useful for simulating the steady-state in ratchetting is developed within the framework of the strain hardening and dynamic recovery format. The model is formulated to have two kinds of dynamic recovery terms, which operate at all times and only in a critical state, respectively. The model is examined on the basis of nonproportional experiments of Modified 9Cr–1Mo steel at 550°C and IN738LC at 850°C. The experiments include multiaxial, as well as uniaxial, ratchetting, multiaxial cyclic stress relaxation, and nonproportional cyclic straining along a butterfly-type strain path. It is shown that the model is successful in simulating the experiments, and that the model is featured by the capability of representing appropriately the steady-state in ratchetting under multiaxial and uniaxial cyclic loading.  相似文献   

8.
9.
Uniaxial and multiaxial ratchetting tests were conducted at temperatures between 200 and 600 °C on modified 9Cr–1Mo steel, which exhibits both viscoplastic and cyclic softening behavior. Anomalous behavior was observed in the stress-controlled uniaxial ratchetting tests; the material exhibited outstanding ratchetting in the tensile direction under zero mean stress. Under the uniaxial conditions, the ratchetting deformation significantly depended on the loading rate and hold time in addition to parameters such as the maximum stress and stress ratio. The uniaxial ratchetting was also accelerated to a great extent when cyclic deformation was given before the ratchetting tests. Under the multiaxial conditions, the ratchetting depended on the steady stress, cyclic strain range and strain rate. The ratchetting progressed faster as the steady stress or strain range became larger, or the strain rate became smaller, as expected. Monotonic compression tests were carried out to investigate the reason for the rachetting under no mean stress. Strain range change tests were also conducted to investigate the effect of strain range on the cyclic softening behavior of the material in detail.  相似文献   

10.
New test equipment has been developed to measure the in-plane cyclic behavior of sheet metals at elevated temperatures. The tester has clamping dies with adjustable side force to prevent the sheet specimens from buckling during compressive loading. In addition to the room temperature experiment, cartridge type heaters are inserted in the clamping dies so that the specimen can be heated up to 400 °C during the cyclic tests. For the strain measurement, a non-contact type laser extensometer is used. In order to validate the newly developed test device, the tension-compression (and compression-tension) tests under pre-strains and various temperatures have been performed. As model materials, the aluminum alloy sheet which exhibits a large Bauschinger effect and the magnesium alloy sheet which exhibits different amounts of asymmetry under cyclic loading are used. The developed device can be well-suited to measure the cyclic material behavior, especially the anisotropic and asymmetric hardening of light-weight materials.  相似文献   

11.
The classical Williams solution for the state of stress at the tip of a semi-infinite notch is re-visited and the two-term singular solution re-written in a form making the mode mixity and load magnitude explicit. This is used to show that, for a 270° solid angle, the majority of notch problems exhibit a process zone which is entirely or substantially mode I in character, which in turn means that the notch strength may practically be governed by a single elastic parameter. A method for finding the practical limit on the load and stress intensity ratio where this holds is described.  相似文献   

12.
Notched rectangular SAE 1015 mild-steel plates were subjected to controlled cyclic nominal stresses or strains in a closed-loop servo-controlled fatigue-testing machine. Resistance strain gages were used to measure strains at the notch roots. These strains showed that large mean strains and strain ranges prevailed at these notches, though nominal strains were fully reversed and small. Inelastic stress- and strain-concentration factors calculated at various cycles were used to check the accuracy of the Neuber relation between these concentration factors and elastic stress-concentration factor. Limitations of this relation and characteristic notch-strain behavior mentioned above are discussed with reference to the peculiarities of the stress-strain relationships of this material.  相似文献   

13.
Seven projects in which resistance-type bonded strain gages were used in adverse environments are described. The projects involved: (1) force measurements in a 10?10 torr vacuum, (2) load measurements over a temperature range of 75 to 300° F, (3) displacement measurements in a nonconductive fluid at 500° F, (4) dynamic displacement measurements in an electric field, (5) strain measurements in air at 600° F, (6) dynamic displacement and strain measurements to ?320°F, and (7) strain measurements in water at pressures up to 2500 psi and temperatures up to 300° F. This report provides detailed information about the gage installations, the transducers used and the performance obtained.  相似文献   

14.
15.
An experimental study was conducted on the inhomogeneous cyclic plastic deformation of 1045 steel under multiaxial cyclic loading. Thin-walled tubular specimens were used and small strain gages were bonded on the specimen surface to characterize the local deformation. The controlled loading paths included cyclic tension–compression, cyclic torsion, proportional axial-torsion, 90°-out-of-phase axial-torsion, and fully reversed torsion with a constant axial stress. The maximum stress in each experiment was lower than the lower yield stress of the material. It was found that the cyclic plastic deformation within the gage section of the specimen under multiaxial stress state followed the three-stage process that was observed from uniaxial loading, namely, incubation, propagation, and saturation. The plastic deformation was significantly inhomogeneous during the propagation stage, and the inhomogeneity continued through the saturation stage. The duration of each stage and the saturated strains were dependent on the cyclic stress amplitude and the loading path. Multiaxial stress state reduced the incubation stage. With identical equivalent stress magnitude, the nonproportional loading path resulted in the shortest incubation and propagation stages, and the saturated equivalent plastic strain magnitude was the smallest. Although the deformation over the gage section was inhomogeneous, the plastic deformation in a given local area was found to be practically isotropic.  相似文献   

16.
The low-cycle fatigue (LCF) behavior of a nickel-based single crystal superalloy with [001] orientation was studied at an intermediate temperature of T0℃ and a higher temperature of To + 250℃ under a constant low strain rate of 10^-3 s^-1 in ambient atmosphere. The superalloy exhibited cyclic tension-compression asymmetry which is dependent on the temperature and applied strain amplitude. Analysis on the fracture surfaces showed that the surface and subsurface casting micropores were the major crack initiation sites. Interior Ta-rich carbides were frequently observed in all specimens. Two distinct types of fracture were suggested by fractogaphy. One type was characterized by Mode-I cracking with a microscopically rough surface at To + 250℃. Whereas the other type at lower temperature T0℃ favored either one or several of the octahedral {111} planes, in contrast to the normal Mode-I growth mode typically observed at low loading frequencies (several Hz). The failure mechanisms for two cracking modes are shearing of γ' precipitates together with the matrix at T0℃ and cracking confined in the matrix and the γ/γ'interface at To - 250℃.  相似文献   

17.
An elastic–plastic finite element analysis is presented for a notched shaft subjected to multiaxial nonproportional synchronous cyclic tension/torsion loading. The elastic–plastic material property is described by the von Mises yield criterion and the kinematic hardening rule of Prager/Ziegler. The finite element program system ABAQUS is used to solve the boundary value problem. Special emphasis is given to explore the effects of the stress amplitude, the mean-stress, and the mutual interactions on the local stress–strain responses at the notch root.  相似文献   

18.
The higher order asymptotic fields at the tip of a sharp V-notch in a power-hardening material for plane strain problem of Mode I are derived. The order hierarchy in powers ofr for various hardening exponentsn and notch angles β is obtained. The angular distributions of stress for several cases are plotted. The self-similarity behavior between the higher order terms is noticed. It is found that the terms with higher order can be neglected for the V-notch angle β>45°. Project supported by the National Natural Science Foundation of China (Nos. 10132010 and 10072033).  相似文献   

19.
An experimental study is presented for cyclic plastic stresses at notch roots in specimens under constant-amplitude repeated tension and reversed loading. Edge-notched,K T=2, 2024-T3 aluminum-alloy sheet specimens were cycled until local stress conditions stabilized. Local stress histories were determined by recording local strain histories during cycling and reproducting these histories in simple, unnotched specimens. The fatigue lives for these notched specimens were estimated using stabilized local stresses and an alternating vs. mean stress diagram for unnotched specimens of the same material. These predictions compared favorably with lives from S-N data for the notch configuration tested. In addition, an expression is presented for calculating local first-cycle plastic stresses. An acceptable correlation is shown between predicted stresses and experimental data within the scope of the investigation.  相似文献   

20.
A series of experiments is described in which specimens of AISI 4340 VAR steel are deformed in shear at temperatures ranging from −190°C.to 20°C. The tests were performed in a torsional Kolsky (split-Hopkinson) bar at quasistatic and dynamic strain rates. Before testing, all the specimens were normalized, austenitized and tempered to hardnesses of 55, 44 or 33, on the Rockwell C scale. In addition to constant temperature and constant strain rate tests, a number of experiments were performed to study strain rate and temperature history effects in these three tempers. For this purpose a prestrain was imposed at one temperature and strain rate, followed by continued straining at a new temperature or at a new strain rate.Results provide stress-strain curves in shear for the three tempers of this steel. Temperature effects appear greater between −190°C and −50°C than between −50°C and room temperature, particularly for the 200°C temper, while the strain rate sensitivity is about the same as found in mild steel. History effects are quite small for the 600°C and 425°C tempers, even at large strains. However, for the 200°C temper a prestrain at −50°C followed by a temperature change to −190°C requires a higher flow stress than does deformation imposed entirely at the lower temperature. Anomalous history effects of this nature have been seen before in steels, although this is the first evidence for their association with a particular temper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号