首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The electrochemical hydrogen evolution reaction is catalyzed most effectively by the Pt group metals. As H2 is considered as a future energy carrier, the need for these catalysts will increase and alternatives to the scarce and expensive Pt group catalysts will be needed. We analyze the ability of different metal surfaces and of the enzymes nitrogenase and hydrogenase to catalyze the hydrogen evolution reaction and find a necessary criterion for high catalytic activity. The necessary criterion is that the binding free energy of atomic hydrogen to the catalyst is close to zero. The criterion enables us to search for new catalysts, and inspired by the nitrogenase active site, we find that MoS2 nanoparticles supported on graphite are a promising catalyst. They catalyze electrochemical hydrogen evolution at a moderate overpotential of 0.1-0.2 V.  相似文献   

2.
A highly efficient photocatalytic system for hydrogen evolution with dihydronicotinamide coenzyme (NADH) as a sacrificial agent in an aqueous solution has been constructed by using water-soluble platinum clusters functionalized with methyl viologen-alkanethiol (MVA2+) and a simple electron-donor dyad, 9-mesityl-10-methylacridinium ion (Acr+-Mes), which is capable of fast photoinduced electron transfer but extremely slow back electron transfer. The mean diameter of the platinum core was determined as R(CORE) = 1.9 nm with a standard deviation sigma = 0.5 nm by transmission electron microscopy (TEM). As a result, the hydrogen-evolution rate of the photocatalytic system with MVA2+-modified platinum clusters (MVA2+-PtC) is 10 times faster than the photocatalytic system with the mixture of the same amount of MVA2+ and platinum clusters as that of MVA2+-PtC under otherwise the same experimental conditions. The radical cation of NADH has been successfully detected by laser flash photolysis experiments. The decay of the absorbance due to NAD*, produced by the deprotonation from NADH*+, coincides with the appearance of the absorption band due to Acr*-Mes. This indicates electron transfer from NAD* to Acr+-Mes to give Acr*-Mes, which undergoes the electron-transfer reduction of MVA2+-PtC, leading to the efficient hydrogen evolution.  相似文献   

3.
Electrochemical hydrogen evolution was studied at an Au electrode in liquid and solid tetramethylammonium hydroxide hydrate (CH3)4NOH·10H2O (m.p. 253 K) down to almost 110 K. The current–potential relationships were obtained by slow scan voltammetry. The lowering of temperature causes substantial decrease of the slope of linear Tafel plots. This was interpreted as a decrease of charge transfer coefficient from 0.37 at room temperature to 0.01 at 113 K. The activation energy of the electrochemical hydrogen evolution at temperatures below 200 K is equal to 0.25±0.03 eV and is larger than the activation energy of the electrolyte conductivity.  相似文献   

4.
Hydrogen is one of the most promising energy carriers to replace fossil fuels and electrolyzing water to produce hydrogen is a very effective method. However, designing highly active and stable non-precious metal hydrogen evolution electrocatalysts that can be used in universal pH is a huge challenge. Here, we have reported a simple strategy to develop a highly active and durable non-precious MoO_2-Ni electrocatalyst for hydrogen evolution reaction(HER) in a wide pH range. The MoO_2-Ni catalyst exhibits a superior electrocatalytic performance with low overpotentials of 46, 69, and 84 mV to reach-10 mA cm~(-2) in 1.0 M KOH, 0.5 M H_2SO_4,and 1.0 M PBS electrolytes, respectively. At the same time, the catalyst also shows outstanding stability over a wide pH range. It is particularly noted that the catalytic performance of MoO_2-Ni in alkaline solution is comparable to the highest performing catalysts reported. The outstanding HER performance is mainly attributed to the collective effect of the rational morphological design, electronic structure engineering, and strong interfacial coupling between MoO_2 and Ni in heterojunctions.This work provides a viable method for the synthesis of inexpensive and efficient HER electrocatalysts for the use in wide pH ranges.  相似文献   

5.
Heteropolyanions of tungstophosphoric acid (PWA) have been successfully hybridized with carbon nanotubes (CNTs) by a severe mechanical milling. The obtained hybrid is electroactive for hydrogen evolution (HE) at potentials as positive as −0.16 V vs. Ag/AgCl in 0.2 M HClO4 aqueous solution and its electrocatalysis is up to the level of Pt/CNTs (20 wt% Pt) for HE, indicating a vigorous alternative to Pt group metals. The HE mechanism of the hybrid was also studied and it was found that the tungsten oxycarbides are the electroactive components for HE.  相似文献   

6.
孙小惠  努扎艾提·艾比布  杜虹 《催化学报》2021,42(1):235-243,后插50-后插52,封3
氢气是一种环境友好可再生的清洁能源,电解水无疑是一种很好的制氢方法.然而,电催化分解水析氢受到其缓慢的动力学过程、较低的催化性能和较差的稳定性的限制.为了使整个过程更节能,具有高电流密度和低的过电势的高效电催化剂被广泛研究.非化学计量相硒化钴(Co0.85Se)作为一种重要的金属硫属化合物具有优异的催化性能而广受关注.但是低维的Co0.85Se活性位点少,分散性差,电子传递能力低,导致其电催化剂活性差.多壁碳纳米管(MWCNTs)具有多种电性能,包括金属导电性和电子存储能力等.因此,MWCNTs的特殊结构和高导电性可以有效地促进电子从电催化剂向碳纳米管的转移,实现高效电分解水制氢性能.本文在不使用表面活性剂和模板的情况下,通过一步水热溶剂热法合成弱磁性Co0.85Se纳米片负载碳纳米管电催化剂.采用磁滞回线研究Co0.85Se和MWCNTs/Co0.85Se的磁性能,结果表明其有弱顺磁性,Co0.85Se纳米片之间的空间距离增强导致粒子间偶极相互作用减弱,从而使MWCNTs/Co0.85Se纳米复合材料的矫顽力值增加到158 Oe.随着微晶尺寸的减小和纳米颗粒间距的增大,MWCNTs/Co0.85Se催化剂的比表面积增大,有利于提高其电催化活性.扫描电镜和透射电镜展示出Co0.85Se纳米片分散性较差,且团聚现象严重,而MWCNTs/Co0.85Se纳米复合催化剂显示Co0.85Se纳米片均匀分散在MWCNTs表面,且纳米片尺寸明显减小,有利于Co0.85Se纳米片暴露更多的活性位点.线性扫描伏安曲线测量表明,在酸性溶液中Co0.85Se纳米片在电流密度为10 mA cm?2时,其过电势为319 mV(vs.RHE),30 wt%MWCNTs/Co0.85Se的过电势为266 mV(vs.RHE).Co0.85Se和MWCNTs/Co0.85Se的Tafel斜率分别为92.6和60.5 mV dec?1.此外,MWCNTs/Co0.85Se的电流交换密度(j0)为0.07 mA cm?2.较小的Tafel斜率和高的电流交换密度表明,MWCNTs/Co0.85Se具有良好的反应动力学和快速的质子分离速率.交流阻抗谱表明MWCNTs/Co0.85Se比Co0.85Se电阻更小,电子传输速率更快.电化学活性表面积与双电层在固液界面处的电容测量值成正比.结果显示,30 wt%MWCNTs/Co0.85Se的双电层电容为0.22 mF cm^-2,高于Co0.85Se和15 wt%的rGO/Co0.85Se(0.04 mF cm^-2,0.17 mF cm^-2),这表明较大的电化学活性表面积有利于析氢反应进行.30 wt%MWCNTs/Co0.85Se的循环稳定测试表明其具有较好的稳定性.综上,本文介绍了通过一步水热法合成具有弱磁性的Co0.85Se和MWCNTs/Co0.85Se电催化剂,碳纳米管作为一种高导电性材料被引入Co0.85Se纳米片中以减少Co0.85Se的团聚,使Co0.85Se的活性位点增加,进而提高电催化制氢性能.  相似文献   

7.
The heat effect in the reduction of copper(II) by formaldehyde on palladium catalyst particles accompanied by hydrogen evolution depends on the presence of deuterium in the system. In the case of 80% substitution of hydrogen in the system by deuterium the heat effect increases 1·5 times. This fact can not be attributed only to the difference in the energies of the bonds of hydrogen and deuterium in compounds participating in the reaction.  相似文献   

8.
通过离子交换的方式将Ru负载到NiFe水滑石(LDH)纳米阵列表面得到(Ru/NiFe LDH),Ru的引入显著提升了NiFe LDH的活性比表面积,暴露了更多的活性位点,同时调控了其电子结构,大大提升了其本征催化活性。在碱性条件下,催化析氢反应时仅需50 mV的过电位即可达到10 mA·cm-2的电流密度,Tafel斜率为52.3 mV·dec-1。而相同条件下原始NiFe LDH达到10mA·cm-2的电流密度则需要226 mV的过电位,Tafel斜率为157.5 mV·dec-1。同时制备的Ru/NiFe LDH也展现出了良好的析氧催化活性,在50 mA·cm-2的电流密度下,过电位仅为231 mV,而NiFe LDH则需237 mV。Ru/NiFe LDH在长时间的电催化条件下依然能保持良好的工作稳定性。  相似文献   

9.
李英杰  王鑫  周昱成 《无机化学学报》2023,39(10):1905-1913
通过离子交换的方式将Ru负载到NiFe水滑石(LDH)纳米阵列表面得到(Ru/NiFe LDH),Ru的引入显著提升了NiFe LDH的活性比表面积,暴露了更多的活性位点,同时调控了其电子结构,大大提升了其本征催化活性。在碱性条件下,催化析氢反应时仅需50 mV的过电位即可达到10 mA·cm-2的电流密度,Tafel斜率为52.3 mV·dec-1。而相同条件下原始NiFe LDH达到10mA·cm-2的电流密度则需要226 mV的过电位,Tafel斜率为157.5 mV·dec-1。同时制备的Ru/NiFe LDH也展现出了良好的析氧催化活性,在50 mA·cm-2的电流密度下,过电位仅为231 mV,而NiFe LDH则需237 mV。Ru/NiFe LDH在长时间的电催化条件下依然能保持良好的工作稳定性。  相似文献   

10.
Layered MoS2@graphene functionalized with nitrogen-doped graphene quantum dots (MoS2@NGQDs-GR) was obtained by one-pot hydrothermal method, as an enhanced electrochemical hydrogen evolution catalyst.  相似文献   

11.
Organo-modified ZnAl layered double hydroxide was used for the first time to support a nickel a-diimine catalyst for the ethylene polymerization, and its effects on the catalytic activity, the morphology, thermal stability, and dynamic viscoelastic properties of the resultant polyethylene material were investigated. Different from the homogeneous nickel a-diimine catalyst, the supported catalyst system was found to have a long-lasting polymerization activity. Moreover, the resultant polyethylene material showed good particle morphology, improved thermal stability, as well as enhanced storage modulus and complex viscosity.  相似文献   

12.
Zhang K  Mao L  Cai R 《Talanta》2000,51(1):179-186
A rapid and sensitive method was proposed for the determination of hydrogen peroxide based on the catalytic effect of hemoglobin using o-phenylenediamine as the substrate. Stopped-flow spectrophotometric method was used to study the kinetic behavior of the oxidation reaction. The catalytic effectiveness of hemoglobin was compared with other four kinds of catalysts. The initial rate of the formation of the reaction product 2,3-diaminophenazine at the wavelength of 425 nm was monitored, permitting a detection limit of 9.2x10(-9) mol/l H(2)O(2). A linear calibration graph was obtained over the H(2)O(2) concentration range 5.0x10(-8)-3.5x10(-6) mol/l, and the relative standard deviation at a H(2)O(2) concentration of 5.0x10(-7) mol/l was 2.08%. Satisfied results were obtained in the determination of H(2)O(2) in real samples by this method.  相似文献   

13.
Choline hydroxide was used as a basic catalyst for aldol condensation reactions to produce new C-C bonds between several ketones and aldehydes. Choline supported on MgO exhibits higher TOF values than other well known basic catalysts in these reactions.  相似文献   

14.
15.
Here we report the purely organic metal-free electrocatalyst — acridinium salt 9-phenyl-10-methylacridinium iodide for hydrogen evolution reaction. A controlled potential electrolysis experiment in present 9-phenyl-10-methylacridinium iodide with a simultaneous gas chromatographic analysis confirmed the catalytic production of molecular hydrogen. The behavior of the catalytic wave is typical for a “total catalysis”. A mechanism involving initial reduction of PhAcr+/PhAcr and subsequent protonation is proposed.  相似文献   

16.
In this work, we have sought economically viable methods for hydrogen evolution reaction (her). For this purpose, we have investigated the voltammetric and in situ spectroelectrochemical behavior of copper phthalocyanine complex and its electrocatalytic activity for her. In spite of the belief that the complexes bearing redox active metal center can catalyze hydrogen evolution reactions, copper phthalocyanine having ring-based redox processes shows excellent electrocatalytic activity.  相似文献   

17.
18.
The pyridine-heteropoly compounds are very active catalysts for phenol hydroxylation to dihydroxybenzenes with hydrogen peroxide as oxidant in aqueous solutions. The conversion of phenol reaches 77.8%, and the selectivity for dihydroxybenzenes reaches 99%.  相似文献   

19.
20.
Advanced materials for electrocatalytic and photoelectrochemical water splitting are central to the area of renewable energy. In this work, we developed a selective solvothermal synthesis of MoS(2) nanoparticles on reduced graphene oxide (RGO) sheets suspended in solution. The resulting MoS(2)/RGO hybrid material possessed nanoscopic few-layer MoS(2) structures with an abundance of exposed edges stacked onto graphene, in strong contrast to large aggregated MoS(2) particles grown freely in solution without GO. The MoS(2)/RGO hybrid exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER) relative to other MoS(2) catalysts. A Tafel slope of ~41 mV/decade was measured for MoS(2) catalysts in the HER for the first time; this exceeds by far the activity of previous MoS(2) catalysts and results from the abundance of catalytic edge sites on the MoS(2) nanoparticles and the excellent electrical coupling to the underlying graphene network. The ~41 mV/decade Tafel slope suggested the Volmer-Heyrovsky mechanism for the MoS(2)-catalyzed HER, with electrochemical desorption of hydrogen as the rate-limiting step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号