首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We revisit the assignment of Raman phonons of rare‐earth titanates by performing Raman measurements on single crystals of O18 isotope‐rich spin ice and nonmagnetic pyrochlores and compare the results with their O16 counterparts. We show that the low‐wavenumber Raman modes below 250 cm−1 are not due to oxygen vibrations. A mode near 200 cm−1, commonly assigned as F2g phonon, which shows highly anomalous temperature dependence, is now assigned to a disorder‐induced Raman active mode involving Ti4+ vibrations. Moreover, we address here the origin of the ‘new’ Raman mode, observed below TC ~ 110 K in Dy2Ti2O7, through a simultaneous pressure‐dependent and temperature‐dependent Raman study. Our study confirms the ‘new’ mode to be a phonon mode. We find that dTC/dP = + 5.9 K/GPa. Temperature dependence of other phonons has also been studied at various pressures up to ~8 GPa. We find that pressure suppresses the anomalous temperature dependence. The role of the inherent vacant sites present in the pyrochlore structure in the anomalous temperature dependence is also discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Burkeite formation is important in saline evaporites and in pipe scales. Burkeite is an anhydrous sulphate-carbonate with an apparent variable anion ratio. Such a formula with two oxyanions lends itself to vibrational spectroscopy. Two symmetric sulphate stretching modes are observed, indicating at least at the molecular level the nonequivalence of the sulphate ions in the burkeite structure. The strong Raman band at 1065 cm?1 is assigned to the carbonate symmetric stretching vibration. The series of Raman bands at 622, 635, 645, and 704 cm?1 are assigned to the ν4 sulphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from T d to C 3v or even C 2v.  相似文献   

3.
H. Yurtseven  H. Karacali 《哲学杂志》2013,93(25):2913-2926
A correlation between thermal expansivity α p and frequency shifts (1/ν) (?ν/?P) T was established for the ammonia solid I near its melting point. For this correlation, calculated frequencies for the translational modes of ν T (100?cm?1) and ν T (130?cm?1) were used to acquire the Raman frequency shifts at pressures of 0, 1.93 and 3.07?kbar in ammonia solid I. In this crystalline system, values of the slope dPm /dT were deduced for the fixed pressures from linear plots of α p vs. (1/ν) (?ν/?P) T . Slope values at zero pressure are in very good agreement with those obtained experimentally. It is also shown that the spectroscopic modification of the Pippard relations applies satisfactorily to ammonia solid I.  相似文献   

4.
Raman spectra have been investigated in PbTiO3 thin films grown on Si by metalorganic chemical vapor deposition. A large grazing-angle scattering technique was taken to measure the temperature dependence of Raman spectra below room temperature. All Raman modes in the thin films are assigned and compared with those in the bulk single crystal, a newA 1(TO) soft mode at 104 cm–1 was recorded which satisfies the Curie-Weiss relation 2 =A(T cT). Intensities of theA 1(1TO) andE(1TO) modes were anomalously strengthened with increasing temperature. Raman modes for the thin films exhibit remarkable frequency downshift and upshift which is related to the effect of internal stress.  相似文献   

5.
Insight into the unique structure of hydrotalcites (HTs) has been obtained using Raman spectroscopy. Gallium‐containing HTs of formula Zn4 Ga2(CO3)(OH)12 · xH2O (2:1 ZnGa‐HT), Zn6 Ga2(CO3)(OH)16 · xH2O (3:1 ZnGa‐HT) and Zn8 Ga2(CO3)(OH)18 · xH2O (4:1 ZnGa‐HT) have been successfully synthesised and characterised by X‐ray diffraction (XRD) and Raman spectroscopy. The d(003) spacing varies from 7.62 Å for the 2:1 ZnGa‐HT to 7.64 Å for the 3:1 ZnGa‐HT. The 4:1 ZnGa‐HT showed a decrease in the d(003) spacing, compared to the 2:1 and 3:1 compounds. Raman spectroscopy complemented with selected infrared data has been used to characterise the synthesised gallium‐containing HTs. Raman bands observed at around 1050, 1060 and 1067 cm−1 are attributed to the symmetric stretching modes of the (CO32−) units. Multiple ν3 (CO32−) antisymmetric stretching modes are found between 1350 and 1520 cm−1, confirming multiple carbonate species in the HT structure. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm−1 and assigned to the ν4 (CO32−) modes support the concept of multiple carbonate species in the interlayer. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
The Raman and FTIR spectra of three metal guanidinium sulfates, [C(NH2)3]2MII(H2O)4(SO4)2, (MII = Mn, Cd and VO), are recorded. The observed spectral bands are assigned in terms of the fundamental modes of vibration of the guanidinium ions, sulfate groups and water molecules. The appearance of the sulfate tetrahedra's ν1 and ν2 modes in the IR spectra and the partial lifting of the ν4 mode in the Raman spectra indicate the distortion of the SO42− tetrahedra in the structure, so that its symmetry is lowered from Td to C1. The geometry of the sulfate group in guanidinium vanadyl sulfate does not deviate much from that of the average sulfate group. The distortion of the SO4 tetrahedra is stronger in GuCds than in GuMnS. The CN3 group in the guanidinium ion is planar (D3h point group) in GuCdS and GuMnS, whereas it is lowered in the vanadyl compound. Furthermore, the spectral analyses show the presence of weak hydrogen bonds in the structures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The thermodynamic properties, spin–lattice relaxation times, T1, and spin–spin relaxation times, T2, of the 27Al, 87Rb, and 133Cs nuclei in MAl(SO4)2·12H2O (M=Rb and Cs) crystals were investigated, and the two crystals were found to lose H2O with increases in temperature. From our results for T1 and T2, we conclude that the discontinuities near Td in the T1 curves of the two crystals correspond to structural changes. In both crystals, below Td the water molecules surrounding the Al3+ and M+ nuclei form distorted octahedra, whereas above Td the water molecules around the Al3+ and M+ nuclei form regular octahedra and the environment of the Al3+ and M+ nuclei has cubic symmetry. Further, the T1 for the 27Al and 87Rb nuclei in RbAl(SO4)2·12H2O below Td were found to increase with increasing temperature, whereas the T1 for the 27Al and 133Cs nuclei in CsAl(SO4)2·12H2O were found to decrease. It is possible that this difference is due to the different characteristics of α- and β-type crystals.  相似文献   

8.
Fundamental (lattice, rotational, and intermolecular) vibrations of the H2AsO4 anion in (C6H9N2)H2AsO4 crystal are calculated using the correlation theorem based on the group theory. The correlation between anionic site of symmetry C s and the factor group D 2h of the crystal yields 12 modes for both lattice and rotational vibrations. The infrared and Raman spectra of these modes do not coincide. Addition of two hydrogen atoms to AsO4 ion yields two As-OH bonds in the H2AsO4 anion. As a result, the molecular symmetry is reduced from T d to C 2υ . The free H2AsO4 anion having C 2υ symmetry gives in total 15 fundamental normal vibrations. Under the crystal field splitting effects, the number of intermolecular vibrations for the anion in infrared and Raman spectra is calculated to be 56 active vibrations. The calculated fundamental vibrationsmanifest themselves as the main features in an experimental infrared spectrum.  相似文献   

9.
We report the microstructural and magnetic properties of transition (3d) and rare earth (4f) metal substituted into the Ax:Zn1?xO (A=Mn, Gd and Mn/Gd) nanocrystal samples synthesized by solgel method. The structural properties and morphology of all samples have been analysed using X-ray diffraction (XRD) method and scanning electron microscopy. The impurity phase in the XRD patterns for all samples is not seen, except (Mn/Gd):ZnO sample where a very weak secondary phase of Gd2O3 is observed. Due to the large mismatch of the ionic radii between Mn2+ and Gd3+ ions, the strain inside the matrix increases, unlike the crystallite size decreases with the substitution of Mn and Gd into ZnO system. A couple of additional vibration modes due to the dopant have been observed in Raman spectrum. The magnetic properties have been studied by vibrating sample magnetometer. The magnetic hysteresis shows that Mn:ZnO and Gd:ZnO have soft ferromagnetic (FM) behaviour, whereas (Mn/Gd):ZnO has strong FM behaviour at room temperature (RT). The enhancement of ferromagnetism (FM) in (Mn/Gd):ZnO sample might be related to short-range FM coupling between Mn2+ and Gd3+ ions via defects potential and/or strain-induced FM coupling due to the expansion lattice by doping. The experimental results indicate that RTFM can be achieved by co-substitution of 3d and 4f metals in ZnO which can be used in spintronics applications.  相似文献   

10.
A novel selective synthesis of the unsymmetrically substituted tetrathiafulvalene dimethyltrimethylene‐tetrathiafulvalene (DMtTTF) is described together with its electrocrystallization to the known conducting mixed‐valence ClO4 and ReO4 salts. Infrared (IR) and Raman spectra of the two isostructural quasi‐one‐dimensional cation radical salts (DMtTTF)2X (X = ReO4, ClO4) are investigated as a function of temperature (T = 5–300 K). At ambient temperature, these salts show metallic‐like properties and below Tρ = 100–150 K, they undergo a smeared transition to semiconducting state. To study this charge localization, we measured temperature dependence of polarized IR reflectance spectra (700–16 000 cm–1) and Raman spectra (150–3500 cm–1, excitation λ = 632.8 nm) of single crystals. For both compounds, the Raman data and especially the bands related to the C=C stretching vibration of the DMtTTF molecule show that the charge distribution on molecules is uniform down to the lowest temperatures. Similarly, IR data confirm that down to the lowest temperatures, there is neither charge ordering nor important modification of the electronic structure. However, the temperature dependence of Raman spectra of both salts reveals a regime change at about 150 K. Additionally, using Density Functional Theory (DFT) methods, the normal vibrational modes of the neutral DMtTTF0 and cationic DMtTTF+ species and also their theoretical IR and Raman spectra were calculated. The theoretical data were compared with the experimental IR and Raman spectra of neutral DMtTTF0 molecule. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
High‐resolution stimulated Raman spectra of13C2H4 in the regions of the ν2 and ν3 Raman active modes have been recorded at two temperatures (145 and 296 K) based on the quasi continuous‐wave (cw) stimulated Raman spectrometer at Instituto de Estructura de la Materia IEM‐CSIC in Madrid. A tensorial formalism adapted to X2Y4 planar asymmetric tops with D2h symmetry (developed in Dijon) and a program suite called D2hTDS (now part of the XTDS/SPVIEW spectroscopic software) were proposed to analyze and calculate the high‐resolution spectra. A total of 103 and 51 lines corresponding to ν2 and ν3 Raman active modes have been assigned and fitted in wavenumber with a global root mean square deviation of 0.54 × 10−3 and 0.36 × 10−3 cm−1, respectively. Due to the fact that the Raman scattering effect is weak, we did not perform in this contribution the line intensities analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The inelastic Coulomb scattering rate 1/τin of conduction electrons has been theoretically evaluated in the presence of localized states such as quantum dots. By a diagrammatical method, we have formulated 1/τin and its relation to the conductivity σloc(ω) through localized states. The dependence of τin on temperature T is examined in the case that σloc(ω) follows the Mott's model. It is found that 1/τin varies as T2(ln Δ/T)d+1 where d is the dimensionality and Δ is tunneling energy between the localized states in the asymptonic T = 0 limit, in agreement with Imry's calculation. It is also found that calculated 1/τin deviates from T2(ln Δ/T)d+1 as T increases, suggesting the importance of correction term at high temperature.  相似文献   

13.
We present secondary phase identification studies on Cr doped ZnO nanoparticles prepared by the sol-gel method. X-ray diffraction analysis confirms the formation of chromium oxides and there is found to be an increase of lattice parameter with thermal annealing. Scanning electron microscopic studies show the increase in the crystalline nature and particle size. Optical absorption measurements of the as prepared sample exhibit a strong band at 356 nm due to the free exciton absorption of the ZnO nanoparticles. An absorption band at 277 nm is due to the 3T13T2 transition in Cr4+ ions which appears only for the annealed samples. Photoluminescence studies show that deep level emission is completely suppressed after Cr2O3 formation/thermal annealing. Raman and FTIR spectra reveal formation of the Cr2O3 phase. Thermal annealing leads to the increase of crystalline nature which gives an enhancement to the Raman modes.  相似文献   

14.
Insight into the unique structure of hydrotalcites has been obtained using Raman spectroscopy. Gallium‐containing hydrotalcites of formula Mg4Ga2(CO3)(OH)12· 4H2O (2:1 Ga‐HT) to Mg8Ga2(CO3)(OH)20· 4H2O (4:1 Ga‐HT) have been successfully synthesized and characterized by X‐ray diffraction and Raman spectroscopy. The d(003) spacing varied from 7.83 Å for the 2:1 hydrotalcite to 8.15 Å for the 3:1 gallium‐containing hydrotalcite. Raman spectroscopy complemented with selected infrared data has been used to characterize the synthesized gallium‐containing hydrotalcites of formula Mg6Ga2(CO3)(OH)16· 4H2O. Raman bands observed at around 1046, 1048 and 1058 cm−1 are attributed to the symmetric stretching modes of the CO32− units. Multiple ν3 CO32− antisymmetric stretching modes are found at around 1346, 1378, 1446, 1464 and 1494 cm−1. The splitting of this mode indicates that the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm−1 assigned to the ν4 (CO32−) modes support the concept of multiple carbonate species in the interlayer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Laser-Induced Fluorescence Line Narrowing (LIFLN) measurements of hyperfine structure splittings performed on the cobalt I transition sequence3d 84s a 2 P 1/23d 74s4p z 24D 3/2 0 3d 84s b 4 F 3/2are presented. The hyperfine coupling constants of theb 4 F 3/2 level were determined to beA = 302.8(1.9) MHz andB = – 81.6(18.2) MHz and are compared with results of both experimental and theoretical studies reported by other authors.  相似文献   

16.
We solve the problem of a Bose or Fermi gas in d-dimensions trapped by δ ⩽ d mutually perpendicular harmonic oscillator potentials. From the grand potential we derive their thermodynamic functions (internal energy, specific heat, etc.) as well as a generalized density of states. The Bose gas exhibits Bose-Einstein condensation at a nonzero critical temperature T c if and only if d + δ > 2, along with a jump in the specific heat at T c if and only if d + δ > 4. Specific heats for both gas types precisely coincide as functions of temperature when d + δ = 2. The trapped system behaves like an ideal free quantum gas in d + δ dimensions. For δ = 0 we recover all known thermodynamic properties of ideal quantum gases in d dimensions, while in 3D for δ = 1, 2 and 3 one simulates behavior reminiscent of quantum wells, wires anddots, respectively. Good agreement is found between experimental critical temperatures for the trapped boson gases 37 87Rb, 3 7Li, 37 85Rb, 2 4He, 19 41K and the known theoretical expression which is a special case for d = δ = 3, but only moderate agreement for 11 27Na and 1 1H. Received 17 July 2002 / Received in final form 14 October 2002 Published online 21 January 2003 RID="a" ID="a"e-mail: mdgg@hp.fciencias.unam.mx  相似文献   

17.
A systematic study on lattice dynamics of Mn + 1AlCn (n = 1–3) phases using first‐principle calculations is reported, where the Raman‐active and infrared‐active (IR) modes are emphasized. The highest phonon wavenumber is related to the vibration of C atoms. The ‘imaginary wavenumber’ in the phonon spectrum of Nb3AlC2 contributes to the composition gap in Nb‐Al‐C system (Nb2AlC and Nb4AlC3 do appear in experiments, but there are no experimental reports on Nb3AlC2). The full set of Raman‐active and IR‐active modes in the 211, 312, and 413 Mn + 1AXn phases is identified, with the corresponding Raman and IR wavenumbers. The 211, 312, and 413 Mn + 1AXn phases have 4, 6, and 8 IR‐active modes, respectively. There is no distinct difference among the wavenumber ranges of IR‐active modes for 211, 312, and 413 phases, with the highest wavenumber of 780 cm−1 in Ta4AlC3. The Raman wavenumbers of M2AlC phases all decrease with increasing the d‐electron shell number of transition metal M. However, this case is valid only for the Raman‐active modes with low wavenumbers of M3AlC2 and M4AlC3. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The pressure dependence of the vibrational modes in ZnP2 has been investigated by Raman Spectroscopy using a diamond anvil cell, up to 150 kbar pressure. The intrachain phosphorus modes exhibit a strong pressure dependence whereas the low frequency Zn-P modes soften very slightly under pressure. For a crystal which is treated as a molecular crystal this is an unexpected result. It is suggested that the behaviour may be due to a buckling of the phosphorus chain, or due to a double bond promotion between P atoms, or a charge transfer under pressure. The shift in the energy gap has also been measured to 100 kbar hydrostatic pressure. There is a small initial blue shift which gradually changes over to a red shift. However the whole shift in 100 kbar is quite small. Combining the (dEg/dP) T with the published (dEg/dT) P the thermal expansion contribution and the electron-phonon interaction contribution were evaluated. The latter dominates the total (dEg/dT) P of ZnP2. The authors felicitate Prof. D S Kothari on his eightieth birthday and dedicate this paper to him on this occasion.  相似文献   

19.
The infrared and Raman spectra of [N(CH3)4]2ZnCl4?yBry, where y = 0, 2 and 4, have been analyzed with ab initio calculations of the vibrational characteristics of constitutive polyhedra, tetramethylammonium [N(CH3)4]+ and [ZnCl4?xBrx]2? (x = 0, 1, 2, 3 and 4) tetrahedra. The optimized geometries, calculated vibrational frequencies, infrared intensities and Raman activities are calculated using Hartree–Fock and density functional theory B3LYP methods with 3-21G, 6-31G(d) and 6-311G+(d,p) basis sets. Calculation of the root mean square difference δrms between the observed and calculated frequencies allows to give scaling factors and to deduce that the best agreements are obtained by B3LYP/6-311G+(d,p) for [N(CH3)4]+ and B3LYP/3-21G for [ZnCl4?xBrx]2?. The present study establishes a strongly reliable assignment of the vibrational modes of [ZnCl4?xBrx]2? tetrahedra based on comparison between experimental and ab initio calculations, both of the frequencies and the intensities of the Raman signals.  相似文献   

20.
The effect of pressure on the Raman modes in TeO2 (paratellurite) has been investigated to 30GPa, using the diamond cell and argon as pressure medium. The pressure dependence of the Raman modes indicates four pressure-induced phase transitions near 1 GPa, 4.5 GPa, 11 GPa and 22 GPa. Of these the first is the well studied second-order transition fromD 4 4 symmetry toD 2 4 symmetry, driven by a soft acoustic shear mode instability. The remarkable similarity in the Raman spectra of phases I to IV suggest that only subtle changes in the structure are involved in these phase transitions. The totally different Raman spectral features of phase V indicate major structural changes at the 22GPa transition. It is suggested that this high pressure-phase is similar to PbCl2-type, from high pressure crystal chemical considerations. The need for a high pressure X-ray diffraction study on TeO2 is emphasized, to unravel the structure of the various high pressure phases in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号