首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
In this work, we explored the capacity of π-conjugated thiopheno-azomethines in the form of thin films for use in organic electronic applications. The charge-carrier transport properties of the π-conjugated thiopheno-azomethines were obtained in field-effect transistor configuration after the characterization of the film forming properties by fluorescence hyperspectral imaging and atomic force microscopy. We observed a semiconducting behavior for the azomethines investigated, being an oligomer thiophene triad, consisting of two azomethine bonds, and its polymer counterpart, consisting of about 15 azomethines bonds. The charge transport properties of an analogous thiophene vinylene triad were also examined for validating the mobility measurements, because such compounds are known to have hole transport properties. The azomethine triad was found to have a hole mobility of 3 × 10−5 cm2/Vs.  相似文献   

2.
A high-performing bottom-gate top-contact pentacene-based oTFT technology with an ultrathin (25–48 nm) and electrically dense photopatternable polymeric gate dielectric layer is reported. The photosensitive polymer poly((±)endo,exo-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid, diphenylester) (PNDPE) is patterned directly by UV-exposure (λ = 254 nm) at a dose typical for conventionally used negative photoresists without the need for any additional photoinitiator. The polymer itself undergoes a photo-Fries rearrangement reaction under UV illumination, which is accompanied by a selective cross-linking of the macromolecules, leading to a change in solubility in organic solvents. This crosslinking reaction and the negative photoresist behavior are investigated by means of sol–gel analysis. The resulting transistors show a field-effect mobility up to 0.8 cm2 V−1 s−1 at an operation voltage as low as −4.5 V. The ultra-low subthreshold swing in the order of 0.1 V dec−1 as well as the completely hysteresis-free transistor characteristics are indicating a very low interface trap density. It can be shown that the device performance is completely stable upon UV-irradiation and development according to a very robust chemical rearrangement. The excellent interface properties, the high stability and the small thickness make the PNDPE gate dielectric a promising candidate for fast organic electronic circuits.  相似文献   

3.
《Organic Electronics》2014,15(7):1317-1323
Aligned single-crystalline organic nanowires (NWs) show promising applications in flexible and stretchable electronics, while the use of pre-existing aligned techniques and well-developed photolithography techniques are impeded by the large incompatibility with organic materials and flexible substrates. In this work, aligned copper phthalocyanine (CuPc) organic NWs were grown on flexible and transparent poly(dimethylsiloxane) (PDMS) substrate via a grating-assisted growth approach. Furthermore, a simple yet efficient etching-assisted transfer printing (ETP) method was used to achieve CuPc NW array-based flexible top-gate organic field-effect transistors (OFETs) with a high mobility up to 2.0 cm2 V−1 s−1, a small operating voltage within ±10 V, a high on/off ratio >104, and excellent bend stability with bending radius down to 3 mm. It is expected that the high-performance organic NW array-based top-gate OFETs with exceeding bend stability will have important applications in future flexible electronics.  相似文献   

4.
We report on the fabrication of highly flexible OTFT-based memory elements with excellent mechanical stability and high retention time. The devices have been fabricated using a combination of two ultrathin AlOx and Parylene C as dielectric, and TIPS-Pentacene as the semiconductor, obtaining high performing low voltage transistors with mobility up to 0.4 cm2/V s, and Ion/Ioff ratio of 105. Charge trapping in the Parylene C electret layer is the mechanism that allows employing these devices as non volatile memory elements, with retention time as high as 4 × 105 s. The electromechanical characterization demonstrated that such memory elements can be cyclically bent around a cylinder with a radius of 150 μm without losing the stored data.  相似文献   

5.
《Organic Electronics》2014,15(6):1155-1165
Solution-processed indacenodithiophene (IDT)-based small molecules with 1,3-indanedione (ID) as terminal acceptor units and 3,3′-hexyl-terthiophene (IDT-3Th-ID(I)) or 4,4′-hexyl-terthiophene (IDT-3Th-ID(II)) as π-bridges, have been designed and synthesized for the application in organic field-effect transistors (OFETs) and organic solar cells (OSCs). These molecules exhibited excellent solubility in common organic solvents, good film-forming ability, reasonable thermal stability, and low HOMO energy levels. For the OFETs devices, high hole motilities of 0.52 cm2 V−1 s−1 for IDT-3Th-ID(I) and 0.61 cm2 V−1 s−1 for IDT-3Th-ID(II) were achieved, with corresponding high ION/IOFF of ca. 107 and ∼109 respectively. The OSCs based on IDT-3Th-ID(I)/PC70BM (2:1, w/w) and IDT-3Th-ID(II)/PC70BM (2:1, w/w) without using any treatment of solvent additive or thermal annealing, showed power conversion efficiencies (PCEs) of 3.07% for IDT-3Th-ID(I) and 2.83% for IDT-3Th-ID(II), under the illumination of AM 1.5G, 100 mW/cm2. The results demonstrate that the small molecules constructed with the highly π-conjugated IDT as donor unit, 3Th as π-bridges and ID as acceptor units, could be promising organic semiconductors for high-performance OFETs and OSCs applications.  相似文献   

6.
Structural and transistor properties of isoindigo derivatives are investigated. The unsubstituted isoindigo affords two polymorphs in addition to the reported brickwork structure; one has a stacking structure analogous to indigo, and another consists of nonplanar molecules. The unsubstituted isoindigo exhibits ambipolar transistor properties with the hole and electron mobilities more than 0.01 cm2/Vs, and 6.6′-diphenylisoindigo shows ambipolar transistor properties with the hole/electron mobilities of 0.037/0.027 cm2/Vs. Isoindigo derivatives with electron withdrawing groups show only electron transport, indicating that the lower limit of the HOMO level showing the hole transport is −5.7 eV.  相似文献   

7.
制作了以并五苯作为有源层的有机场效应晶体管(OFETs)。实验观察表明,在原位条件下,器件有很好的输出特性曲线;但在空气中放置3个月后,输出特性曲线明显衰退,并且关态电流增大;为恢复器件性能,在真空条件下,对器件进行加热处理。实验结果表明,经过热处理的晶体管输出特性极大改善。因此,真空热处理可以使衰退器件的输出特性得到...  相似文献   

8.
A study on the effects of processing additives on the nanoscale phase separation, crystallization, and photovoltaic performance of bulk heterojunction (BHJ) thin films made of 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2) and [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) via spin-casting for photovoltaic applications is reported. By incorporating various solvents as processing additives to a volume of a few percent, the separation of donor and acceptor phases in C6PcH2:PCBM thin films, which discussed by taking the photoluminescence quenching, Davydov splitting at the Q-band of the absorbance spectra and the surface nanomorphology into consideration, is improved, and the crystallinity of the discotic C6PcH2 molecules with hexagonal structures is reinforced. Photovoltaic cells with the optimum phase-separated BHJ materials and high crystallinity of the discotic C6PcH2 molecules are demonstrated to have a power conversion efficiency of 4.2%.  相似文献   

9.
High-quality organic single crystals are produced directly onto the substrates using an improved vapor phase method. Unlike the conventional vapor phase methods, the present method is characterized by forming a large-sized crystal to which semiconductor devices can readily be made. The relevant method requires small space of only a 10-cm cube in which a couple of plates are put in close proximity. The crystal growth is carried out nearly at the thermodynamic equilibrium within the narrow space surrounded with the two plates. Thin single crystals of several hundreds of micrometers in size are grown on one of those plates. For the organic materials to be crystallized, we have chosen 1,4-bis(5-phenylthiophen-2-yl)benzene (AC5) and 5,5-diphenyl-2,2′:5′,2″:5″,2:5,2-quinquethiophene (P5T) from among thiophene/phenylene co-oligomers. The resulting crystals are well-defined polygons, each side reflecting the specific crystallographic orientation. In particular, those grown on self-assembled monolayers are exceedingly flat and free from cracks. We have directly fabricated top-contact field-effect transistors on these crystals. The devices exhibit the excellent performance and keep it both in air and in vacuum for a maximum of a hundred days.  相似文献   

10.
利用对四联苯p -4P 以及五氧化二钒V2O5同时修饰导电沟道及源/漏电极,大幅 提高了基于酞菁铜CuPc场效应晶体管的性能。本文通过在绝缘层SiO2和有源层CuPc 之间插入p-4p缓冲薄层,同时在源/漏电极Al与有机半导体之间引入电极修饰层V2O5, 使得CuPc场效应晶体管的饱和迁移率和电流开/关比分别提高到5×10-2cm2 / V s和 104。p -4P能够诱导p型CuPc形成高度取向的连续薄膜,使得载流子能够在有源层中 更好地传输;而V2O5能够调节载流子的注入势垒,并可有效地降低沟道接触电阻(Rc)。 此方法能够在降低器件制备成本的前提下,大幅提高器件的性能。  相似文献   

11.
The film morphology, structure, and electrical properties of lead phthalocyanine (PbPc) epitaxially grown on 5,5″-bis(3′-fluoro-biphenyl-4-yl)-2,2′:5′,2″-terthiophene (m-F2BP3T) inducing layer substrates were systematic investigated. The morphologies of PbPc films sensitively depend on the thickness of the inducing layer and substrate temperature. All the epitaxial PbPc films with high quality presented the triclinic form with a variation of the out-of-plane orientation. The field-effect mobility of the epitaxial PbPc films was 0.05–0.31 cm2/V s, which was significantly improved by 1–2 orders of magnitude compared to the traditional films. The evolution of the device performance is the synergistic effect of the morphology and out-of-plane orientation of the triclinic form of PbPc. The higher quality of the films and the smaller ratio of (1 0 0)/(0 0 1), the higher device performance is. A clear relationship between the morphology, structure, and the performance of epitaxial PbPc-based organic field-effect transistors was reported.  相似文献   

12.
We report on electric‐field‐induced irreversible structural modifications in pentacene thin films after long‐term operation of organic field‐effect transistor (OFET) devices. Micro‐Raman spectroscopy allows for the analysis of the microstructural modifications of pentacene in the small active channel of OFET during device operation. The results suggest that the herringbone packing of pentacene molecules in a solid film is affected by an external electric field, particularly the source‐to‐drain field that parallels the a–b lattice plane. The analysis of vibrational frequency and Davydov splitting in the Raman spectra reveals a singular behavior suggesting a reduced separation distance between pentacene molecules after long‐term operations and, thus, large intermolecular interactions. These results provide evidence for improved OFET performance after long‐term operation, related to the microstructures of organic semiconductors. It is known that the application of large electric fields alters the semiconductor properties of the material owing to the generation of defects and the trapping of charges. However, we first suggest that large electric fields may alter the molecular geometry and further induce structural phase transitions in the pentacene films. These results provide a basis for understanding the improved electronic properties in test devices after long‐term operations, including enhanced field‐effect mobility, improved on/off current ratio, sharp sub‐threshold swing, and a slower decay rate in the output drain current. In addition, the effects of source‐to‐drain electric field, gate electric field, current and charge carriers, and thermal annealing on the pentacene films during OFET operations are discussed.  相似文献   

13.
Future flexible electronic systems require memory devices combining low power consumption and mechanical bendability. However, high programming/erasing (P/E) voltages, which are universally required to switch the storage states in previously reported ferroelectric organic field-effect transistor (Fe-OFET) nonvolatile memories (NVMs), severely prevent their practical applications. In this work, we develop a novel route to achieve a low-voltage programmable/erasable flexible Fe-OFET NVM. Ferroelectric terpolymer poly(vinylidene-fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)], rather than the conventional ferroelectric copolymer poly(vinylidene-fluoride-trifluoroethylene) [P(VDF-TrFE)], is used as the gate dielectric. The low coercive field of P(VDF-TrFE-CTFE) is the main contribution to the low-voltage operation in the Fe-OFET NVM, even with a relative thick ferroelectric gate dielectric layer. By depositing a long-chain alkane molecule Tetratetracontane (TTC) as the passivation layer on the surface of P(VDF-TrFE-CTFE) film, the layer-by-layer growth mode of semiconductor pentacene is obtained, which results in a large crystalline grain and good interface morphology at the channel/dielectric. Therefore, the mobility of Fe-OFET NVMs is greatly improved. As a result, a high performance flexible Fe-OFET NVM is achieved, with a low P/E voltage of ±15 V, high mobility up to 0.5 cm2 V−1 s−1, reliable P/E endurance property over 1000 cycles, stable data storage retention capability over 6000 s, and excellent mechanical bending durability without visible degradation after 2000 repetitive tensile bending cycles at a small curvature radius of 4.0 mm.  相似文献   

14.
Epitaxial crystallization of perylo[1,12-b,c,d]selenophene (PESE) on highly oriented polyethylene (PE) substrate through vapor phase deposition has been achieved. Oriented PESE crystals with different crystalline morphologies can be fabricated by changing the temperature of PE substrate during vacuum evaporation. When the PE substrate temperature is lower than 70 °C, sparsely dispersed PESE lathlike crystals are produced with their long axis preferentially aligned perpendicular to the chain direction of PE crystals. While the close films of PESE with lathlike crystals aligned with long axis parallel to the chain direction of PE film were obtained above 90 °C. Transistors based on expitaxially crystallized PESE films have been fabricated and the transistor properties were also studied. It is found that transistors show different electrical characteristics depending on the preparation conditions of expitaxially crystallized PESE films. The transistors based on the PESE/PE-SiO2/Si with PESE deposited on oriented PE film at low temperature, i.e., <70 °C, display a similar poor properties with the PESE/OTS-SiO2/Si type transistors. However, when the deposition temperature was elevated to 90 °C, the transistors exhibit a maximum field-effect mobility of 4.4 × 10−2 cm2 V−1 s−1 and maximum on/off ratio of 2.0 × 105, which are about 2 orders of magnitudes higher than the PESE/OTS-SiO2/Si based transistors.  相似文献   

15.
Organic-based complementary inverter could be a key component in future flexible and portable electronic products, which require low-power operation, high operating stability and flexible compatibility at the same time. A simple method for making excellent Al2O3 gate dielectric is developed toward the target, and it is a low-cost solution process with a low annealing temperature compatible with plastic substrates. Utilizing the Al2O3 dielectric, both p-type and n-type low-voltage organic field-effect transistors (OFETs) are realized. The device operating voltage is down to ±3 V, and the On/Off ratio is up to 106. The hole and electron field-effect mobilities are 2.7 cm2/V and 0.2 cm2/V, respectively, and the subthreshold swing is as small as about 110 mV/decade. The high quality of the Al2O3 dielectric results in high operating stability of the devices. The p-type and n-type OFETs are integrated to achieve a low-power complementary inverter with a large gain, which can be successfully fabricated on a flexible substrate.  相似文献   

16.
We report on organic field-effect transistors (OFETs) with sub-micrometer channels fabricated on plastic substrates with fully direct-written electrical contacts. In order to pattern source and drain electrodes with high resolution and reliability, we adopted a combination of two digital, direct writing techniques: ink-jet printing and femtosecond laser ablation. First silver lines are deposited by inkjet printing and sintered at low temperature and then sub-micrometer channels are produced by highly selective femtosecond laser ablation, strongly improving the lateral patterning resolution achievable with inkjet printing only. These direct-written electrodes are adopted in top gate OFETs, based on high-mobility holes and electrons transporting semiconductors, with field-effect mobilities up to 0.2 cm2/V s. Arrays of tens of devices have been fabricated with high process yield and good uniformity, demonstrating the robustness of the proposed direct-writing approach for the patterning of downscaled electrodes for high performance OFETs, compatibly with cost-effective manufacturing of large-area circuits.  相似文献   

17.
By using charge transfer complex silver and 2,3-dichloro-5,6-dicyano-p-benzoquinone (AgDDQ) modified silver as the bottom contact source/drain electrodes, high performance organic transistors and complementary inverter circuits using dinaphtho[2,3-b:2′,3’-f]thieno[3,2-b]thiophene (DNTT) as P-type organic semiconductors and N,N’-bis(n-octyl)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI-8CN2) as N-type organic semiconductors were demonstrated. Devices with Ag-DDQ bottom contact electrodes exhibit good compatibility for both P and N-type organic semiconductors, the transistors and inverters exhibit excellent stability after storing in air ambient for more than 40 days. The fabrication process is compatible with photolithography technology, which is applicable for large area integrated circuits. All these results indicate the potential application of Ag-DDQ modified electrodes in all-organic, flexible, and low-power electronics.  相似文献   

18.
An electrostatic spray deposition (ESD) method was applied to prepare both crystalline domains of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) and insulating films of poly(methyl methacrylate) (PMMA) for fabricating top-gate single-crystal organic field-effect transistors (OFETs). The electrical characteristics of the top-gate device were compared to those of the bottom-gate one (SiO2 bottom-gate insulator) with the same active layer, and the lower charge-trap density at the interface between the top-gate insulator and single-crystalline active layer was demonstrated. The drain current compression in the output characteristics of the top-gate device, however, occurred due to the large parasitic resistance between the source/drain electrodes and accumulation channel. Reducing the thickness of the single-crystalline active layer resulted in a high charge-carrier mobility of 0.29 cm2/V s (channel length of 5 μm).  相似文献   

19.
20.
Developing electronic sensors for ammonia (NH3) is very useful for environmental monitoring and diagnostic purposes. In this work, a highly sensitive, organic field-effect transistor (OFET) based, room temperature sensor for NH3 has been fabricated using dinaphtho [2,3-b:2′,3′-f]thieno [3,2-b]thiophene (DNTT), which showed a fast response to low concentration of the analyte down to 100 ppb. A thin film of solution-processed polymethyl methacrylate (PMMA) has been used as the gate dielectric material and its hydrophobic surface promoted structured growth of organic semiconductor, DNTT, by inducing mass transfer. By controlling the thickness and thereby exploiting the growth dynamics of the semiconductor film, the sensor performance was improved. The sensitivity of the device towards 1 ppm of NH3 was almost doubled with a thinner and porous film of DNTT as compared to that with a thick film. Morphological studies of the sensing layers, using atomic force microscopy (AFM), have established this structure-property relation. The variations in different transistor parameters have been studied with respect to different analyte concentrations. The p-channel devices in the enhancement mode showed depletion upon exposure to NH3. The devices exhibited a fast response and good recovery to the initial state within 2 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号