首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
An unequal cluster-based routing protocol in wireless sensor networks   总被引:3,自引:0,他引:3  
Clustering provides an effective method for prolonging the lifetime of a wireless sensor network. Current clustering algorithms usually utilize two techniques; selecting cluster heads with more residual energy, and rotating cluster heads periodically to distribute the energy consumption among nodes in each cluster and extend the network lifetime. However, they rarely consider the hot spot problem in multihop sensor networks. When cluster heads cooperate with each other to forward their data to the base station, the cluster heads closer to the base station are burdened with heavier relay traffic and tend to die much faster, leaving areas of the network uncovered and causing network partitions. To mitigate the hot spot problem, we propose an Unequal Cluster-based Routing (UCR) protocol. It groups the nodes into clusters of unequal sizes. Cluster heads closer to the base station have smaller cluster sizes than those farther from the base station, thus they can preserve some energy for the inter-cluster data forwarding. A greedy geographic and energy-aware routing protocol is designed for the inter-cluster communication, which considers the tradeoff between the energy cost of relay paths and the residual energy of relay nodes. Simulation results show that UCR mitigates the hot spot problem and achieves an obvious improvement on the network lifetime. Guihai Chen obtained his B.S. degree from Nanjing University, M. Engineering from Southeast University, and PhD from University of Hong Kong. He visited Kyushu Institute of Technology, Japan in 1998 as a research fellow, and University of Queensland, Australia in 2000 as a visiting professor. During September 2001 to August 2003, he was a visiting professor at Wayne State University. He is now a full professor and deputy chair of Department of Computer Science, Nanjing University. Prof. Chen has published more than 100 papers in peer-reviewed journals and refereed conference proceedings in the areas of wireless sensor networks, high-performance computer architecture, peer-to-peer computing and performance evaluation. He has also served on technical program committees of numerous international conferences. He is a member of the IEEE Computer Society. Chengfa Li was born 1981 and obtained his Bachelor’s Degree in mathematics in 2003 and his Masters Degree in computer science in 2006, both from Nanjing University, China. He is now a system programmer at Lucent Technologies Nanjing Telecommunication Corporation. His research interests include wireless ad hoc and sensor networks. Mao Ye was born in 1981 and obtained his Bachelor’s Degree in computer science from Nanjing University, China, in 2004. He served as a research assistant At City University of Hong Kong from September 2005 to August 2006. He is now a PhD candidate with research interests in wireless networks, mobile computing, and distributed systems. Jie Wu is a professor in the Department of Computer Science and Engineering at Florida Atlantic University. He has published more than 300 papers in various journal and conference proceedings. His research interests are in the areas of mobile computing, routing protocols, fault-tolerant computing, and interconnection networks. Dr. Wu serves as an associate editor for the IEEE Transactions on Parallel and Distributed Systems and several other international journals. He served as an IEEE Computer Society Distinguished Visitor and is currently the chair of the IEEE Technical Committee on Distributed Processing (TCDP). He is a member of the ACM, a senior member of the IEEE, and a member of the IEEE Computer Society.  相似文献   

2.
A survey on routing protocols for wireless sensor networks   总被引:33,自引:0,他引:33  
Kemal  Mohamed 《Ad hoc Networks》2005,3(3):325-349
Recent advances in wireless sensor networks have led to many new protocols specifically designed for sensor networks where energy awareness is an essential consideration. Most of the attention, however, has been given to the routing protocols since they might differ depending on the application and network architecture. This paper surveys recent routing protocols for sensor networks and presents a classification for the various approaches pursued. The three main categories explored in this paper are data-centric, hierarchical and location-based. Each routing protocol is described and discussed under the appropriate category. Moreover, protocols using contemporary methodologies such as network flow and quality of service modeling are also discussed. The paper concludes with open research issues.  相似文献   

3.
Wireless sensor and actor networks (WSANs) have been increasingly popular for environmental monitoring applications in the last decade. While the deployment of sensor nodes enables a fine granularity of data collection, resource-rich actor nodes provide further evaluation of the information and reaction. Quality of service (QoS) and routing solutions for WSANs are challenging compared to traditional networks because of the limited node resources. WSANs also have different QoS requirements than wireless sensor networks (WSNs) since actors and sensor nodes have distinct resource constraints.In this paper, we present, LRP-QS, a lightweight routing protocol with dynamic interests and QoS support for WSANs. LRP-QS provides QoS by differentiating the rates among different types of interests with dynamic packet tagging at sensor nodes and per flow management at actor nodes. The interests, which define the types of events to observe, are distributed in the network. The weights of the interests are determined dynamically by using a nonsensitive ranking algorithm depending on the variation in the observed values of data collected in response to interests. Our simulation studies show that the proposed protocol provides a higher packet delivery ratio and a lower memory consumption than the existing state of the art protocols.  相似文献   

4.
Jain-Shing  Chun-Hung   《Ad hoc Networks》2005,3(3):371-388
The conventional clustering method has the unique potential to be the framework for power-conserving ad hoc networks. In this environment, studies on energy-efficient strategies such as sleeping mode and redirection have been reported, and recently some have even been adopted by some standards like Bluetooth and IEEE 802.11. However, consider wireless sensor networks. The devices employed are power-limited in nature, introducing the conventional clustering approach to the sensor networks provides a unique challenge due to the fact that cluster-heads, which are communication centers by default, tend to be heavily utilized and thus drained of their battery power rapidly. In this paper, we introduce a re-clustering strategy and a redirection scheme for cluster-based wireless sensor networks in order to address the power-conserving issues in such networks, while maintaining the merits of a clustering approach. Based on a practical energy model, simulation results show that the improved clustering method can obtain a longer lifetime when compared with the conventional clustering method.  相似文献   

5.
The US Department of Defense (DoD) routinely uses wireless sensor networks (WSNs) for military tactical communications. Sensor node die-out has a significant impact on the topology of a tactical WSN. This is problematic for military applications where situational data is critical to tactical decision making. To increase the amount of time all sensor nodes remain active within the network and to control the network topology tactically, energy efficient routing mechanisms must be employed. In this paper, we aim to provide realistic insights on the practical advantages and disadvantages of using established routing techniques for tactical WSNs. We investigate the following established routing algorithms: direct routing, minimum transmission energy (MTE), Low Energy Adaptive Cluster Head routing (LEACH), and zone clustering. Based on the node die out statistics observed with these algorithms and the topological impact the node die outs have on the network, we develop a novel, energy efficient zone clustering algorithm called EZone. Via extensive simulations using MATLAB, we analyze the effectiveness of these algorithms on network performance for single and multiple gateway scenarios and show that the EZone algorithm tactically controls the topology of the network, thereby maintaining significant service area coverage when compared to the other routing algorithms.  相似文献   

6.
Artificial intelligence (AI)-based wireless sensor network technology is the future of advancement for real-time applications. With AI wireless sensor network technology, it is possible to collect data from any environment, analyze in real time, and use it to optimize processes and operations. AI wireless sensor network technology provides an unprecedented level of accuracy as well as the ability to detect even the slightest changes in a given environment. The AI-based approach uses clustering-based techniques with self-organizing map (SOM) for energy conservation in resource-constrained networks. By clustering the network, it becomes more energy efficient, as data can be shared among members of a cluster without needing to be transmitted across multiple nodes. The proposed AI cluster-based routing approach outperforms in terms of energy consumption and computational challenges of the network. The results obtained demonstrate the proposed approach to achieve lower energy consumption than the existing algorithms while providing the same level of performance in terms of throughput and latency, as well as a comparison with traditional justification techniques.  相似文献   

7.
Clustering of nodes is often used in wireless sensor networks to achieve data aggregation and reduce the number of nodes transmitting the data to the sink. This paper proposes a novel dual head static clustering algorithm (DHSCA) to equalise energy consumption by the sensor nodes and increase the wireless sensor network lifetime. Nodes are divided into static clusters based on their location to avoid the overhead of cluster re-formation in dynamic clustering. Two nodes in each cluster, selected on the basis of the their residual energy and their distance from the sink and other nodes in the cluster, are designated as cluster heads, one for data aggregation and the other for data transmission. This reduces energy consumption during intra-cluster and inter-cluster communication. A multi-hop technique avoiding the hot-spot problem is used to transmit the data to the sink. Experiments to observe the energy consumption patterns of the nodes and the fraction of packets successfully delivered using the DHSCA suggest improvements in energy consumption equalisation, which, in turn, enhances the lifetime of the network. The algorithm is shown to outperform all the other static clustering algorithms, while being comparable with the performance of the best dynamic algorithm.  相似文献   

8.
Multiconstrained QoS multipath routing in wireless sensor networks   总被引:2,自引:0,他引:2  
Sensor nodes are densely deployed to accomplish various applications because of the inexpensive cost and small size. Depending on different applications, the traffic in the wireless sensor networks may be mixed with time-sensitive packets and reliability-demanding packets. Therefore, QoS routing is an important issue in wireless sensor networks. Our goal is to provide soft-QoS to different packets as path information is not readily available in wireless networks. In this paper, we utilize the multiple paths between the source and sink pairs for QoS provisioning. Unlike E2E QoS schemes, soft-QoS mapped into links on a path is provided based on local link state information. By the estimation and approximation of path quality, traditional NP-complete QoS problem can be transformed to a modest problem. The idea is to formulate the optimization problem as a probabilistic programming, then based on some approximation technique, we convert it into a deterministic linear programming, which is much easier and convenient to solve. More importantly, the resulting solution is also one to the original probabilistic programming. Simulation results demonstrate the effectiveness of our approach. This work was supported in part by the U.S. National Science Foundation under grant DBI-0529012, the National Science Foundation Faculty Early Career Development Award under grant ANI-0093241 and the Office of Naval Research under Young Investigator Award N000140210464. Xiaoxia Huang received her BS and MS in the Electrical Engineering from Huazhong University of Science and Technology in 2000 and 2002, respectively. She is completing her Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida. Her research interests include mobile computing, QoS and routing in wireless ad hoc networks and wireless sensor networks. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor, got an early promotion to an associate professor with tenure in August 2003 and to a full professor in August 2005. He holds a University of Florida Research Foundation (UFRF) Professorship from 2006 to 2009. He has published over 200 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on several editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He have also been activitely participating in professional conference organizations such as serving as The Steering Committee Co-Chair for QShine, the Technical Program Vice-Chair for IEEE INFOCOM’2005, Technical Program Symposium Co-Chair for IEEE Globecom’2004, and a member of Technical Program Committee for IEEE INFOCOM (1998, 2000, 2003–2007).  相似文献   

9.
Energy efficiency and quality of service (QoS) are both essential issues in the applications of wireless sensor networks (WSNs) all along, which are mainly reflected in the development of routing and MAC protocols. However, there is little design for achieving the dual performances simultaneously. In this paper, we develop a practical passive cluster-based node-disjoint many to one multipath routing protocol to satisfy the requirements of energy efficiency and QoS in practical WSNs. Passive clustering approach is put to use in the first round, while active clustering technique is taken in the other rounds. Implementation of smart delay strategy makes the cluster distribute uniformly, as well as lessen the number of nodes that have taken part in routing. Among cluster heads, a node-disjoint many to one multipath routing discovery algorithm, which is composed of the optimal path searching process and multipath expansion process, is implemented to find multiple paths at the minimum cost. The simulation results show the proposed protocol achieved very good performance both in energy efficiency and QoS.  相似文献   

10.
This paper presents a novel link-layer encryption protocol for wireless sensor networks. The protocol design aims to reduce energy consumption by reducing security related communication overhead. This is done by merging security related data of consecutive packets. The merging (or combining packets) based on simple mathematical operations helps to reduce energy consumption by eliminating the requirement to send security related fields in headers and trailers. We name our protocol as the Compact Security Protocol referred to as C-Sec. In addition to energy savings, the C-Sec protocol also includes a unique security feature of hiding the packet header information. This feature makes it more difficult to trace the flow of wireless communication, and helps to minimize the cost of defending against replay attacks. We performed rigorous testing of the C-Sec protocol and compared it with well-known protocols including TinySec, MiniSec, SNEP and Zigbee. Our performance evaluation demonstrates that the C-Sec protocol outperforms other protocols in terms of energy savings. We also evaluated our protocol with respect to other performance metrics including queuing delay and error probability.  相似文献   

11.
黄芬 《电视技术》2012,36(13):74-77
DBR(Depth Based Routing)协议是水下无线传感器网络中第一个基于深度信息的路由协议。分析了水下无线传感器网络中DBR路由协议特性,详细阐述了DBR协议中的网络拓扑结构、数据转发机制及其存在的一些问题。并简单介绍了目前有关DBR的改进路由协议。  相似文献   

12.
A trust-aware secure routing protocol (TSRP) for wireless sensor networks is proposed in this paper to defend against varieties of attacks. First, each node calculates the comprehensive trust values of its neighbors based on direct trust value, indirect trust value, volatilization factor, and residual energy to defend against black hole, selective forwarding, wormhole, hello flood, and sinkhole attacks. Second, any source node that needs to send data forwards a routing request packet to its neighbors in multi-path mode, and this continues until the sink at the end is reached. Finally, the sink finds the optimal path based on the path's comprehensive trust values, transmission distance, and hop count by analyzing the received packets. Simulation results show that TSRP has lower network latency, smaller packet loss rate, and lower average network energy consumption than ad hoc on-demand distance vector routing and trust based secure routing protocol.  相似文献   

13.
Anonymous communication is very important for many wireless sensor networks, because it can be used to hide the identity of important nodes, such as the base station and a source node. In sensor networks, anonymous communication includes several important aspects, such as source anonymity, communication relationship anonymity, and base station anonymity. Existing sensor network anonymous schemes either cannot achieve all the anonymities or have large computation, storage, and communication overheads. In this paper, we propose an efficient anonymous communication protocol for sensor networks that can achieve all the anonymities while having small overheads on computation, storage, and communication. We compare our anonymous communication protocol with several existing schemes, and the results show that our protocol provides strong anonymity protection and has low overheads. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.

Wireless sensor networks (WSNs) have grown excessively due to their various applications and low installation cost. In WSN, the main concern is to reduce energy consumption among nodes while maintaining timely and reliable data forwarding. However, most of the existing energy aware routing protocols incur unbalanced energy consumption, which results in inefficient load balancing and compromised network lifetime. Therefore, the main target of this research paper is to present adaptive energy aware cluster-based routing (AECR) protocol for improving energy conservation and data delivery performance. Our proposed AECR protocol differs from other energy efficient routing schemes in some aspects. Firstly, it generates balance sized clusters based on nodes distribution and avoids random clusters formation. Secondly, it optimizes both intra-cluster and inter-cluster routing paths for improving data delivery performance while balancing data traffic on constructed forwarding routes and at the end, in order to reduce the excessive energy consumption and improving load distribution, the role of Cluster Head (CH) is shifted dynamically among nodes by exploit of network conditions. Simulation results demonstrate that AECR protocol outperforms state of the art in terms of various performance metrics.

  相似文献   

15.
Wireless sensor and actuator networks are composed of sensor and actuator nodes interconnected via wireless links. The actuators are responsible for taking prompt decisions and react accordingly to the data gathered by sensor nodes. In order to ensure efficient actions in such networks, we propose a new routing protocol that provides QoS in terms of delay and energy consumption. The network is organized in clusters supervised by CHs (Cluster-Heads), elected according to important metrics, namely the energy capability, the riches of connectivity, which is used to select the CH with high node density, and the accessibility degree regarding all the actuators. The latter metric is the distance in number of hops of sensor nodes relative to the actuator nodes. This metric enhances more the network reliability by reducing the communication delay when alerting the actuator nodes, and hence, reducing the energy consumption. To reach efficiently the actuator nodes, we design a delay and energy sensitive routing protocol based on-demand routing approach. Our protocol incurs less delay and is energy efficient. We perform an evaluation of our approach through simulations. The obtained results show out performance of our approach while providing effective gain in terms of communication delay and energy consumption.  相似文献   

16.
To maximize the network lifetime of a wireless sensor network, an efficient transmission technique is critical. The energy constraint is a crucial factor in the sensor network because the sensor nodes are typically battery-run and it is impossible or difficult to recharge them in most application scenarios. Unbalanced data transference in the communication channel frequently produces an energy hole problem, which causes the premature death of the sensor nodes and reduces the network lifetime. To resolve this issue and improve the network lifetime, the proposed approach adjusts the transmission range according to the distances between the cluster heads and their members. Furthermore, a mobile data collector based on the firefly optimization algorithm is employed to increase the network lifetime. The proposed algorithm is compared with standard benchmark algorithms in several scenarios. The simulation results demonstrate that the proposed algorithm outperforms existing algorithms with respect to the network lifetime.  相似文献   

17.
Energy use is a crucial design concern in wireless ad hoc networks since wireless terminals are typically battery-operated. The design objectives of energy-aware routing are two folds: Selecting energy-efficient paths and minimizing the protocol overhead incurred for acquiring such paths. To achieve these goals simultaneously, we present the design of several on-demand energy-aware routing protocols. The key idea behind our design is to adaptively select the subset of nodes that are required to involve in a route-searching process in order to acquire a high residual-energy path and/or the degree to which nodes are required to participate in the process of searching for a low-power path in networks wherein nodes have transmission power adjusting capability. Analytical and simulation results are given to demonstrate the high performance of the designed protocols in energy-efficient utilization as well as in reducing the protocol overhead incurred in acquiring energy-efficient routes. Baoxian Zhang received his B.S., M.S., and Ph.D. degrees in Electrical Engineering from Northern Jiaotong University, Beijing, China in 1994, 1997, and 2000, respectively. From January 2001 to August 2002, he was working with Department of Electrical and Computer Engineering at Queen’s University in Kingston as a postdoctoral fellow. He is currently a research scientist with the School of Information Technology and Engineering (SITE) of University of Ottawa in Ottawa, Ontario, Canada. He has published over 40 refereed technical papers in international journals and conference proceedings. His research interests include routing algorithm and protocol design, QoS management, wireless ad hoc and sensor networks, survivable optical networks, multicast communications, and performance evaluation. He is a member of the IEEE. Hussein Mouftah joined the School of Information Technology and Engineering (SITE) of the University of Ottawa in September 2002 as a Canada Research Chair (Tier 1) Professor in Optical Networks. He has been with the Department of Electrical and Computer Engineering at Queen’s University (1979-2002), where he was prior to his departure a Full Professor and the Department Associate Head. He has three years of industrial experience mainly at Bell Northern Research of Ottawa, now Nortel Networks (1977-79). He has spent three sabbatical years also at Nortel Networks (1986-87, 1993-94, and 2000-01), always conducting research in the area of broadband packet switching networks, mobile wireless networks and quality of service over the optical Internet. He served as Editor-in-Chief of the IEEE Communications Magazine (1995-97) and IEEE Communications Society Director of Magazines (1998-99) and Chair of the Awards Committee (2002-2003). He is a Distinguished Speaker of the IEEE Communications Society since 2000. Dr. Mouftah is the author or coauthor of five books, 22 book chapters and more than 700 technical papers and 8 patents in this area. He is the recipient of the 1989 Engineering Medal for Research and Development of the Association of Professional Engineers of Ontario (PEO), and the Ontario Distinguished Researcher Award of the Ontario Innovation Trust. He is the joint holder of the Best Paper Award for a paper presented at SPECTS’2002, and the Outstanding Paper Award for papers presented at the IEEE HPSR’2002 and the IEEE ISMVL’1985. Also he is the joint holder of a Honorable Mention for the Frederick W. Ellersick Price Paper Award for Best Paper in the IEEE Communications Magazine in 1993. He is the recipient of the IEEE Canada (Region 7) Outstanding Service Award (1995). Also he is the recipient of the 2004 IEEE Communications Society Edwin Howard Armstrong Achievement Award, and the 2004 George S. Glinski Award for Excellence in Research of the Faculty of Engineering, University of Ottawa. Dr. Mouftah is a Fellow of the IEEE (1990) and Fellow of the Canadian Academy of Engineering (2003).  相似文献   

18.
李尧  滑楠  田罗庚  王荃 《电讯技术》2014,54(5):682-688
介绍了典型分簇无线传感器网络路由协议的分类,总结了分簇路由协议的研究进展。针对无线传感器网络从同构型网络向异构型网络发展的趋势和特点,指出了路由协议向节点间相互协作的发展方向,并且在设计路由协作算法时可采用与无线传感器网络极为相似的多Agent系统模型。  相似文献   

19.
Mohamed  Kemal   《Ad hoc Networks》2008,6(4):621-655
The major challenge in designing wireless sensor networks (WSNs) is the support of the functional, such as data latency, and the non-functional, such as data integrity, requirements while coping with the computation, energy and communication constraints. Careful node placement can be a very effective optimization means for achieving the desired design goals. In this paper, we report on the current state of the research on optimized node placement in WSNs. We highlight the issues, identify the various objectives and enumerate the different models and formulations. We categorize the placement strategies into static and dynamic depending on whether the optimization is performed at the time of deployment or while the network is operational, respectively. We further classify the published techniques based on the role that the node plays in the network and the primary performance objective considered. The paper also highlights open problems in this area of research.  相似文献   

20.
Xiaoxia  Jianfeng  Yuguang   《Ad hoc Networks》2007,5(6):885-896
Directional antenna offers various benefits for wireless sensor networks, such as increased spatial reuse ratio and reduced energy consumption. In this paper, we formulate the maximum flow problem as an optimization problem in interference-limited wireless sensor networks with switched beam directional antennas. The optimization problem is solvable in the presence of an omniscient controller, but it is NP-hard. Therefore, we seek a distributed algorithm to achieve the maximum flow through jointly routing and scheduling. The maximum flow between given source destination pair is determined forwardly hop by hop and is verified by the proposed feasible condition at downstream nodes. This method works for both single-beam antenna and multi-beam antenna with some variation in the feasibility condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号