首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Mucin-16 (MUC16) is the established ovarian cancer marker used to follow the disease during or after treatment for epithelial ovarian cancer. The emerging science of cancer markers also demands for the new sensitive detection methods. In this work, we have developed an electrochemical immunosensor for antigen MUC16 using gold nanoelectrode ensemble (GNEE) and ferrocene carboxylic acid encapsulated liposomes tethered with monoclonal anti-Mucin-16 antibodies (αMUC16). GNEEs were fabricated by electroless deposition of the gold within the pores of polycarbonate track-etched membranes. Afterwards, αMUC16 were immobilized on preformed self-assembled monolayer of cysteamine on the GNEE via cross-linking with EDC-Sulfo-NHS. A sandwich immunoassay was performed on αMUC16 functionalized GNEE with MUC16 and immunoliposomes. The differential pulse voltammetry was employed to quantify the faradic redox response of ferrocene carboxylic acid released from immunoliposomes. The dose–response curve for MUC16 concentration was found between the range of 0.001–300 U mL−1. The lowest detection limit was found to be 5 × 10−4 U mL−1 (S/N = 3). We evaluated the performance of this developed immunosensor with commercial ELISA assay by comparing results obtained from spiked serum samples and real blood serum samples from volunteers.  相似文献   

2.
On the basis of copper-enhanced gold nanoparticle tags as an amplification approach, we introduced, in this paper, magnetic nanoparticles for further improving performance of electrochemical immunoassay by anodic stripping voltammetry (ASV) at a glassy-carbon electrode. Due to the use of antibody-immobilized magnetic nanoparticles, the immunoreaction between antibody and antigen takes place in a homogeneous bulk solution phase. Compared with traditional solid interface reaction, the proposed strategy can provide some advantages such as easy of separation, shorter analytical time, wider linear range, and lower detection limit. It was also successfully applied to HBsAg determination in a linear range of 0.1-1500 ng mL−1 with a detection limit of 87 pg mL−1. The proposed analytical strategy holds good selectivity, sensitivity and repeatability and also great promise for the extended application in the fields of clinical diagnosis, bio-affinity assay and environmental monitoring.  相似文献   

3.
(+)-Catechin (CAT) was considered as a polyphenolic compound abundantly contained in plants. It exerts protective effect against cancer, inflammatory and cardiovascular diseases. These protective effects are mainly attributed to its antioxidative activity by scavenging free radicals. Therefore, the need of simple, selective and sensitive monitoring of (+)-catechin in commercial drinks and biological fluids is crucial. A new selective and sensitive voltammetric quantification of (+)-catechin was investigated at low cost hydroxypropyl-beta-cyclodextrin modified carbon paste sensor in acidic solutions. The constructed sensor was treated in simple and fast manner to increase its stability for catechin determination. The effect of solution and instrumental parameters was investigated by using osteryoung square-wave anodic voltammetry (OSWAV) at pH 2.20 and differential pulse cathodic voltammetry (DPCV) at pH 4.40 in 0.10 M Britton-Robinson buffer. Acidic solutions were chosen to increase the stability of (+)-catechin, reduce its adsorption on the sensor surface and increase the selectivity of proposed method. Cyclic voltammetry (CV) was used to elucidate the electrochemical mechanism of catechin at the modified electrochemical sensor. A linear range up to 7.20 and 4.20 μg mL−1 of catechin was achieved in anodic and cathodic voltammetry, respectively. The method gave reproducible and reliable results with 1.50 (g mL−1 catechin (S.D. 0.062). Limit of detection of 0.12 and 0.30 ng mL−1 and limit of quantification (LOQ) of 1.10 and 2.80 ng mL−1 were easily achieved using anodic and cathodic voltammetry, respectively. Selectivity of the proposed procedure was estimated by testing recovery and adding the most interfering metal ions and/or organic compounds. The proposed method was applied successfully to selective determination of catechin in some commercial drinks like tea, cocoa and coffee with acceptable recovery range (98-102%). The extraction of catechin was rather simple, making it suitable for studies with a large number of commercial samples. Furthermore, the application to urine samples without pretreatment was achieved and statistically confirmed at 95% confidence level. It was easy to analyze catechin in urine down to 0.55 ng mL−1.  相似文献   

4.
A new and disposable electrochemical immunosensor was designed for detection of alpha-fetoprotein (AFP), as a model analyte, with sensitivity enhancement based on enzyme-catalyzed silver deposition onto irregular-shaped gold nanoparticles (ISGNPs). The assay was carried out with a sandwich-type immunoassay protocol by using ISGNP-labeled anti-AFP antibodies conjugated with alkaline phosphatase (ALP–Ab2) as detection antibodies. The enzymatically catalytic deposition of silver on the electrode could be measured by stripping analysis in KCl solution due to the Ag/AgCl solid-state voltammetric process. Several labeling protocols including spherical gold nanoparticle-labeled ALP–Ab2 and ISGNP-labeled ALP–Ab2 were investigated for determination of AFP, and improved analytical properties were achieved with the ISGNP labeling. With the ISGNP labeling method, the effects of incubation time and incubation temperature for antigen-antibody reaction, and deposition time of silver on the current responses of the electrochemical immunosensors were also monitored. Under optimal conditions, the electrochemical immunosensor exhibited a wide dynamic range from 0.01 ng mL−1 to 200 ng mL−1 with a detection limit of 5.0 pg mL−1 AFP. The immunosensor displayed a good stability and acceptable reproducibility and accuracy. No significant differences at the 95% confidence level were encountered in the analysis of 10 clinical serum samples between the developed immunoassay and the commercially available electrochemiluminescent method for determination of AFP.  相似文献   

5.
A novel immunoassay format employing direct coating of small molecular hapten on microtiter plates is reported for the detection of atrazine and 2,4-dichlorophenoxyacetic (2,4-D). In this assay, the polystyrene surface of microtiter plates was first treated with an acid to generate -NO2 groups on the surface. Acid treated plates were further treated with 3-aminoprpyltriethoxysilane (APTES) to functionalize the plate surface with amino groups for covalent linkage to small molecular hapten with carboxyl groups. The modified plates showed significantly high antibody binding in comparison to plates coated with hapten-carrier protein conjugates and presented excellent stability as a function of the buffer pH and reaction time. The developed assay employing direct hapten coated plates and using affinity purified atrazine and 2,4-D antibodies demonstrated very high sensitivity, IC50 values for atrazine and 2,4-D equal to 0.8 ng mL−1 and 7 ng mL−1, respectively. The assay could detect atrazine and 2,4-D levels in standard water samples even at a very low concentration upto 0.02 and 0.7 ng mL−1 respectively in the optimum working range between 0.01 and 1000 ng mL−1 with good signal reproducibility (p values: 0.091 and 0.224 for atrazine and 2,4-D, respectively). The developed immunoassay format could be used as convenient quantitative tool for the sensitive screening of pesticides in samples.  相似文献   

6.
In this work, we reported a scanometric assay system based on the aptamer-functionalized silver nanoparticles (apt-AgNPs) for detection of platelet-derived growth factor-BB (PDGF-BB) protein. The aptamer and ssDNA were bound with silver nanoparticles by self-assembly of sulfhydryl group at 5′ end to form the apt-AgNPs probe. The apt-AgNPs probe can catalyze the reduction of metallic ions in color agent to generate metal deposition that can be captured both by human eyes and a flatbed scanner. Two different color agents, silver enhancer solution and color agent 1 (10 mM HAuCl4 + 2 mM hydroquinone) were used to develop silver and gold shell on the surface of AgNPs separately. The results demonstrated that the formation of Ag core–Au shell structure had some advantages especially in the low concentrations. The apt-AgNPs probe coupled with color agent 1 showed remarkable superiority in both sensitivity and detection limit compared to the apt-AuNPs system. The apt-AgNPs system also produced a wider linear range from 1.56 ng mL−1 to 100 ng mL−1 for PDGF-BB with the detection limit lower than 1.56 ng mL−1. The present strategy was applied to the determination of PDGF-BB in 10% serum, and the results showed that it had good specificity in complex biological media.  相似文献   

7.
In this paper, gold nanoparticles coated with palladium dots (Pd@Au) bimetallic nanostructures have been reported to have a peroxidase like activity which is not found in their monometallic counterparts. Based on this finding, we have developed an immunoassay in which antibody-modified Pd@Au nanostructure catalyzes the dimerization of a fluorogenic substrate for peroxidase, 3-(4-dihydroxy phenyl) propionic acid (HPPA), to generate high fluorescence signal. Specific antibodies against bensulfuron-methyl were generated by using a well characterized bensulfuron–protein conjugate as an immunogen, and the assay was performed in a competitive immunoassay format where Pd@Au nanostructure was bound to secondary antibody to show the peroxidase like activity. The developed immunoassay exhibited an excellent sensitivity showing a dynamic response range from 0.001 to 100 ng mL−1 for herbicide bensulfuron-methyl with a detection limit of 0.01 ng mL−1 (n = 3). The newly synthesized bimetallic nanostructure shows the advantages of low cost, easy synthesis and tunable catalytic activity, making it a promising substitution of enzyme peroxidase in different applications.  相似文献   

8.
A novel electrochemical immunosensor based on double signal amplification of enzyme-encapsulated liposomes and biocatalytic metal deposition was developed for the detection of human prostate specific antigen (PSA). Alkaline phosphatase (ALP)-encapsulated and detection antibody-functionalized liposomes were first prepared and used as the detection reagent. In the sandwich immunoassay, the model analyte PSA was first captured by anti-PSA capture antibody immobilized on the electrode and then sandwiched with the functionalized liposomes. The bound liposomes were then lysed with surfactant to release the encapsulated ALP, which served as secondary signal amplification means. ALP on the electrode surface initiated the hydrolysis of ascorbic acid 2-phosphate (AA-p) to produce ascorbic acid. The latter, in turn, reduced silver ions on the electrode surface, leading to deposition of the metal silver on the electrode surface. Linear sweep voltammetry (LSV) was chosen to detect the amount of the deposited silver. The results showed that the anodic stripping peak current was linearly dependent on the PSA concentration in the range of 0.01-100 ng mL−1, and a detection limit as low as 0.007 ng mL−1 can be obtained. Since the cut-off value of human PSA is 4 ng mL−1, the proposed electrochemical immunosensor would be expected to gain widespread applications for the detection of PSA in clinical diagnosis.  相似文献   

9.
Caifeng Ding  Fei Zhao  Jin-Ming Lin 《Talanta》2009,78(3):1148-4751
A novel and effective electrochemical immunosensor for the rapid determination of α-fetoprotein (AFP) based on carbon paste electrode (CPE) consisting of room temperature ionic liquid (RTIL) N-butylpyridinium hexafluorophosphate (BPPF6) and graphite. The surface of the CPE was modified with gold nanoparticles for the immobilization of the α-fetoprotein antibody (anti-AFP). By sandwiching the antigen between anti-AFP on the CPE modified with gold nanoparticles and the secondary antibody, polyclonal anti-human-AFP labeled with horseradish peroxidase (HRP-labeled anti-AFP), the immunoassay was established. The concentration of AFP was determined based on differential pulse voltammetry (DPV) signal, which was generated in the reaction between O-aminophenol (OAP) and H2O2 catalyzed by HRP labeled on the sandwich immunosensor. AFP concentration could be measured in a linear range of 0.50-80.00 ng mL−1 with a detection limit of 0.25 ng mL−1. The immunosensor exhibited high sensitivity and good stability, and would be valuable for clinical assay of AFP.  相似文献   

10.
In this paper, a simple and sensitive amperometric immunosensor for simultaneous detection of four biomarkers by using distinguishable redox-probes as signal tags was proposed for the first time. In sandwich immunoassay format, four kinds of capture antibodies (C-Ab) were immobilized by gold nanoparticles (AuNPs) electro-deposited on the surface of glass carbon electrode (GCE); four kinds of detection antibodies (D-Ab) labeled with different redox probes (including anthraquinone 2-carboxylic acid (Aq), thionine (Thi), ferrocenecarboxylic acid (Fc) and tris(2,2’-bipyridine-4,4’-dicarboxylic acid) cobalt(III) (Co(bpy)33+)), were combined with 3,4,9,10-perylenetetracarboxylic acid (PTCA), poly(diallyldimethylammonium chloride) (PDDA) and AuNPs functionalized carbon nanotubes, and served as signal tracer. When four target antigens were present, differential pulse voltammetry (DPV) scan exhibited four well-resolved peaks, each peak indicated one antigen, and its intensity was quantitative correlational to the concentration of corresponding analyte. To verify the strategy, four biomarkers for diagnosis of colorectal carcinoma, including carcinoembryonic antigen (CEA), carbohydrate antigen (CA) 19-9 CA125, and CA242, were used as model analytes, the immunosensor exhibited high selectivity and sensitivity, and peak current displayed good linear relationship to logarithm concentration in the ranges from 0.016 to 15 ng mL−1 for CEA; 0.008 to 10 ng mL−1 for CA19-9; 0.012 to 12 ng mL−1 for CA125; 0.010 to 10 ng mL−1 for CA242, and low detection limits of 4.2, 2.8, 3.3 and 3.8 pg mL−1, respectively.  相似文献   

11.
A sensitive competitive flow injection chemiluminescence (CL-FIA) immunoassay for immunoglobulin G (IgG) was developed using gold nanoparticle as CL label. In the configuration, anti-IgG antibody was immobilized on a glass capillary column surface by 3-(aminopropyl)-triethoxysilane and glutaraldehyde to form immunoaffinity column. Analyte IgG and gold nanoparticle labeled IgG were passed through the immunoaffinity column mounted in a flow system and competed for the surface-confined anti-IgG antibody. CL emission was generated from the reaction between luminol and hydrogen peroxide in the presence of Au (III), generated from chemically oxidative dissolution of gold nanoparticle by an injection of 0.10 mol L−1 HCl–0.10 mol L−1 NaCl solution containing 0.10 mmol L−1 Br2. The concentration of analyte IgG was inversely related to the amount of bound gold nanoparticle labeled IgG and the CL intensity was linear with the concentration of analyte IgG from 1.0 ng mL−1 to 40 ng mL−1 with a detection limit of 5.2 × 10−10 g mL−1. The whole assay time including the injections and washing steps was only 30 min for one sample, which was competitive with CL immunoassays based on a gold nanoparticle label and magnetic separation. This work demonstrates that the CL immunoassay incorporation of nanoparticle label and flow injection is promising for clinical assay with sensitivity and high-speed.  相似文献   

12.
This study reports a novel, simple and sensitive immunoassay using fluorescence quenching caused by gold nanoparticles coated with antibody. The method is based on a non-competitive heterogeneous immunoassay of human IgG conducted by the typical procedure of sandwich immunocomplex formation. Goat anti-human IgG was first adsorbed on polystyrene microwells, and human IgG analyte was captured by the primary antibody and then sandwiched by antibody labeled with gold nanoparticles. The sandwich-type immunocomplex was subsequently dissociated by the mixed solution of sodium hydroxide and trisodium citrate, the solution obtained, which contains gold nanoparticles coated with antibody, was used to quench fluorescence. The fluorescence intensity of fluorescein at 517 nm was inversely proportional to the logarithm of the concentration of human IgG in the dynamic range of 10-5000 ng mL−1 with a detection limit of 4.7 ng mL−1. The electrochemical experiments and the UV-vis measurements were applied to demonstrate whether the immunoglod was dissociated completely and whether the gold nanoparticles aggregated after being dissociated, respectively. The proposed system can be extended to detect target molecules such as other kinds of antigen and DNA strands, and has broad potential applications in disease diagnosis.  相似文献   

13.
We here report a detection technology that integrates highly sensitive time-resolved luminescence technique into lateral flow assay platform to achieve excellent detection performance with low cost. We have developed very bright, surface-functionalized and mono-dispersed phosphorescent nanoparticles of long lifetime under ambient conditions. The phosphorescent nanoparticles have been used to conjugate with monoclonal antibody for C-reactive protein (CRP), an inflammatory biomarker. Lateral flow immunoassay devices have been developed using the conjugate for highly sensitive detection of CRP. The CRP assay can achieve a detection sensitivity of <0.2 ng mL−1 in serum with a linear response from 0.2 to 200 ng mL−1 CRP. We have also developed a low cost time-resolved luminescence reader for the lateral flow immunoassay (LFIA) devices. The reader does not use expensive band pass filter and still provide very low detection background and high detection sensitivity on solid substrates such as nitrocellulose membranes. The reader can detect less than 2.5 ng phosphorescent particles captured on a nitrocellulose membrane strip with more than three orders of magnitude linear detection dynamic range. The technology should find a number of applications, ranging from clinical diagnostics, detection of chemical and biological warfare agents, to food and environmental monitoring.  相似文献   

14.
In this work, a repeatable assembling and disassembling electrochemical aptamer cytosensor was proposed for the sensitive detection of human liver hepatocellular carcinoma cells (HepG2) based on a dual recognition and signal amplification strategy. A high-affinity thiolated TLS11a aptamer, covalently attached to a gold electrode through Au–thiol interactions, was adopted to recognize and capture the target HepG2 cells. Meanwhile, the G-quadruplex/hemin/aptamer and horseradish peroxidase (HRP) modified gold nanoparticles (G-quadruplex/hemin/aptamer–AuNPs–HRP) nanoprobe was designed. It could be used for electrochemical cytosensing with specific recognition and enzymatic signal amplification of HRP and G-quadruplex/hemin HRP-mimicking DNAzyme. With the nanoprobes as recognizing probes, the HepG2 cancer cells were captured to fabricate an aptamer-cell-nanoprobes sandwich-like superstructure on a gold electrode surface. The proposed electrochemical cytosensor delivered a wide detection range from 1 × 102 to 1 × 107 cells mL−1 and high sensitivity with a low detection limit of 30 cells mL−1. Furthermore, after the electrochemical detection, the activation potential of −0.9 to −1.7 V was performed to break Au–thiol bond and regenerate a bare gold electrode surface, while maintaining the good characteristic of being used repeatedly. The changes of gold electrode behavior after assembling and desorption processes were investigated by electrochemical impedance spectroscopy and cyclic voltammetry techniques. These results indicate that the cytosensor has great potential in disease diagnostic of cancers and opens new insight into the reusable gold electrode with repeatable assembling and disassembling in the electrochemical sensing.  相似文献   

15.
Liu R  Xing Z  Lv Y  Zhang S  Zhang X 《Talanta》2010,83(1):48-54
A sensitive sandwich type immunoassay has been proposed with the detection by inductively coupled plasma mass spectrometry (ICP-MS) in a single particle mode (time resolved analysis). The signal induced by the flash of ions (197Au+) due to the ionization of single Au-nanoparticle (Au-NP) label in the plasma torch can be measured by the mass spectrometer. The frequency of the transient signals is proportional to the concentration of Au-NPs labels. Characteristics of the signals obtained from Au-NPs of 20, 45 and 80 nm in diameters were discussed. The analytical figures for the determination of Au-labeled IgG using ICP-MS in conventional integral mode and single particle mode were compared in detail. Rabbit-anti-human IgG was used as a model analyte in the sandwich immunoassay. A detection limit (3σ) of 0.1 ng mL−1 was obtained for rabbit-anti-human IgG after immunoreactions, with a linear range of 0.3-10 ng mL−1 and a RSD of 8.1% (2.0 ng mL−1). Finally, the proposed method was successfully applied to spiked rabbit-anti-human IgG samples and rabbit-anti-human serum samples. The method resulted to be a highly sensitive ICP-MS based sandwich type immunoassay.  相似文献   

16.
A quick and reproducible electrochemical-based immunosensor technique, using magnetic core/shell particles that are coated with self-assembled multilayer of nanogold, has been developed. Magnetic particles that are structured from Au/Fe3O4 core-shells were prepared and aminated after a reaction between gold and thiourea, and additional multilayered coatings of gold nanoparticles were assembled on the surface of the core/shell particles. The carcinoembryonic antibody (anti-CEA) was immobilized on the modified magnetic particles, which were then attached on the surface of solid paraffin carbon paste electrode (SPCE) by an external magnetic field. This is an assembly of a novel immuno biosensor for carcinoembryonic antigen (CEA). The sensitivity and response features of this immunoassay are significantly affected by the surface area and the biological compatibility of the multilayered nanogold. The linear range for the detection of CEA was from 0.005 to 50 ng mL−1 and the limit of detection (LOD) was 0.001 ng mL−1. The LOD is approximately 500 times more sensitive than that of the traditional enzyme-linked immunosorbent assay for CEA detection.  相似文献   

17.
A simple and sensitive electrochemical immunoassay protocol was developed for the detection of carcinoembryonic antigen (CEA) using nanosilver-doped DNA polyion complex membrane (PIC) as sensing interface. To construct such an immunosensor, double-stranded DNA was initially assembled onto the surface of thionine/Nafion-modified screen-printed carbon electrode to adsorb silver ions with positive charges, then silver ions were reduced to nanosilver particles with the aid of NaBH4, and then anti-CEA antibodies were immobilized on the nanosilver surface. Gold nanoparticles conjugated with horseradish peroxidase-labeled anti-CEA were employed as signal antibodies for the detection of CEA with a sandwich-type assay format. Under optimal conditions, the immunosensor exhibited a dynamic range of 0.03-32 ng mL−1 with a low detection limit of 10 pg mL−1 CEA. Intra- and inter-assay imprecision (CVs) were <9.5% and 6.5%, respectively. The response could remain 90.1% of the original current at 30th day. 50 real samples were evaluated using the immunosensor and the enzyme-linked immunosorbent assay, respectively, and received in accordance with those two methods.  相似文献   

18.
The electrochemical detection of cell lines of MCF-7 (human breast cancer) has been reported, using magnetic beads for the separation tool and high-affinity DNA aptamers for signal recognition. The high specificity was obtained by using the magnetic beads and aptamers, and the good sensitivity was realized with the signal amplification of DNA capped CdS or PbS nanocrystals. The ASV (anodic stripping voltammetry) technology was employed for the detection of cadmic cation and lead ions, for electrochemical assay of the amount of the target cells and biomarkers on the membrane of target cells, respectively. This electrochemical method could respond to as low as 100 cells mL−1 of cancer cells with a linear calibration range from 1.0 × 102 to 1.0 × 106 cells mL−1, showing very high sensitivity. Moreover, the amounts of HER-3 which were overexpressed on MCF-7 cells were calculated correspond to be 3.56 × 104 anti-HER-3 antibody molecules. In addition, the assay was able to differentiate between different types of target and control cells based on the aptamers and magnetic beads used in the assay, indicating the wide applicability of the assay for early and accurate diagnose of cancers.  相似文献   

19.
A one-step immunochromatographic assay (ICA) was developed for the detection of seven kinds of cephems in milk. Polyclonal antibodies (PcAb) with group-specific to cephems were raised in rabbits after immunization with cephalexin-keyhole limpet hemocyanin (KLH) conjugate. The specificity of anti-sera was determined by indirect competitive enzyme-linked immunosorbent assay (icELISA), and the 50% inhibitions (IC50) of cephalexin and cefadroxil were obtained at 1.5 ng mL−1; IC50 of cefatiofur, cefapirin, cefazolin, cefalothin and cefotaxine were 4, 3.7, 3.2, 4.5 and 5 ng mL−1, respectively. The PcAb against cephems were conjugated to colloidal gold particles as the detection reagent for ICA strips to test for cephems. This method achieved semi-quantitative detection of cephems in <5 min, with high sensitivity to cephalexin and cefadroxil (both 0.5 ng mL−1). At the same time, cefatiofur, cefapirin, cefazolin, cefalothin and cefotaxine were detected at <100 ng mL−1 in spiked processed-milk samples. This method was compared with an enzyme-linked immunosorbent assay by testing 40 milk samples, and the positive samples were validated by a high-performance liquid chromatographic method, with an agreement rate of 100% for both comparisons. In conclusion, the method was rapid and accurate for the multi-residue detection of cephems in milk.  相似文献   

20.
A novel free-probe assay of dextrin was established based on the resonance light scattering (RLS) enhancement in aqueous solution due to the self-aggregation of dextrin. The RLS intensity was well proportional to the concentration of dextrin over the wide range 0.2-14 μg mL−1 and a detection limit 0.02 μg mL−1 was obtained in the optimum conditions. The effect factors such as pH, buffer medium, holding time, ionic strength and temperature were studied in detail. Little or no interference was presented in the detection when adding coexisting substances including various metal ions and some saccharine in the solution. The assay proposed owns the advantages of easy operation, rapidity, sensitivity and practicability. Three synthetic samples and three kinds of medicine samples were analyzed with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号