首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we investigate a class of multi-group epidemic models with general exposed distribution and nonlinear incidence rate. Under biologically motivated assumptions, we show that the global dynamics are completely determined by the basic production number $R_0$. The disease-free equilibrium is globally asymptotically stable if $R_0\leq1$, and there exists a unique endemic equilibrium which is globally asymptotically stable if $R_0>1$. The proofs of the main results exploit the persistence theory in dynamical system and a graph-theoretical approach to the method of Lyapunov functionals. A simpler case that assumes an identical natural death rate for all groups and a gamma distribution for exposed distribution is also considered. In addition, two numerical examples are showed to illustrate the results.  相似文献   

2.
In this paper, we investigate a disease transmission model of SIRS type with latent period τ?0 and the specific nonmonotone incidence rate, namely, . For the basic reproduction number R0>1, applying monotone iterative techniques, we establish sufficient conditions for the global asymptotic stability of endemic equilibrium of system which become partial answers to the open problem in [Hai-Feng Huo, Zhan-Ping Ma, Dynamics of a delayed epidemic model with non-monotonic incidence rate, Commun. Nonlinear Sci. Numer. Simul. 15 (2010) 459-468]. Moreover, combining both monotone iterative techniques and the Lyapunov functional techniques to an SIR model by perturbation, we derive another type of sufficient conditions for the global asymptotic stability of the endemic equilibrium.  相似文献   

3.
4.
A delayed epidemic model with non-monotonic incidence rate which describes the psychological effect of certain serious on the community when the number of infectives is getting larger is studied. The disease-free equilibrium is globally asymptotically stable when R0<1 and is globally attractive when R0=1 are derived. On the other hand, The disease is permanent when R0>1 is also obtained. Numerical simulation results are given to support the theoretical predictions.  相似文献   

5.
6.
Global behavior and permanence of SIRS epidemic model with time delay   总被引:1,自引:0,他引:1  
In this paper an autonomous SIRS epidemic model with time delay is studied. The basic reproductive number R0 is obtained which determines whether the disease is extinct or not. When the basic reproductive number is greater than 1, it is proved that the disease is permanent in the population, and explicit formula are obtained by which the eventual lower bound of the fraction of infectious individuals can be computed. Throughout the total paper, we mainly use the technique of Lyapunov functional to establish the global stability of the infection-free equilibrium and the local stability of the endemic equilibrium but need another sufficient condition.  相似文献   

7.
In this paper, we study the spreading of infections in complex heterogeneous networks based on an SIRS epidemic model with birth and death rates. We find that the dynamics of the network-based SIRS model is completely determined by a threshold value. If the value is less than or equal to one, then the disease-free equilibrium is globally attractive and the disease dies out. Otherwise, the disease-free equilibrium becomes unstable and in the meantime there exists uniquely an endemic equilibrium which is globally asymptotically stable. A series of numerical experiments are given to illustrate the theoretical results. We also consider the SIRS model in the clustered scale-free networks to examine the effect of network community structure on the epidemic dynamics.  相似文献   

8.
9.
In this paper, a stage-structured epidemic model with a nonlinear incidence with a factor Sp is investigated. By using limit theory of differential equations and Theorem of Busenberg and van den Driessche, global dynamics of the model is rigorously established. We prove that if the basic reproduction number R0 is less than one, the disease-free equilibrium is globally asymptotically stable and the disease dies out; if R0 is greater than one, then the disease persists and the unique endemic equilibrium is globally asymptotically stable. Numerical simulations support our analytical results and illustrate the effect of p on the dynamic behavior of the model.  相似文献   

10.
We investigate a class of multi-group epidemic models with distributed delays. We establish that the global dynamics are completely determined by the basic reproduction number R0. More specifically, we prove that, if R0?1, then the disease-free equilibrium is globally asymptotically stable; if R0>1, then there exists a unique endemic equilibrium and it is globally asymptotically stable. Our proof of global stability of the endemic equilibrium utilizes a graph-theoretical approach to the method of Lyapunov functionals.  相似文献   

11.
In this paper, we consider the global dynamics of the S(E)IS model with delays denoting an incubation time. By constructing a Lyapunov functional, we prove stability of a disease‐free equilibrium E0 under a condition different from that in the recent paper. Then we claim that R0≤1 is a necessary and sufficient condition under which E0 is globally asymptotically stable. We also propose a discrete model preserving positivity and global stability of the same equilibria as the continuous model with distributed delays, by means of discrete analogs of the Lyapunov functional.  相似文献   

12.
In this paper, we study the oscillation, global asymptotic stability, and other properties of the positive solutions of the difference equation
  相似文献   

13.
We consider an SAIRS epidemic model with vaccinations and treatment, where asymptomatic and symptomatic infectious individuals are considered in the transmission of the disease. We found the basic reproduction number, 0 and using 0, we conducted global stability analysis. We proved when 0<1, the disease-free equilibrium is globally stable. If 0>1, the disease-free equilibrium in unstable and a unique endemic equilibrium exists. We explored the global stability of the endemic equilibrium and noticed it is globally stable under certain conditions. Moreover, we then considered a special case of the SAIRS model, the SAIR model. We proved the disease-free equilibrium is globally stability when 0<1 and the endemic equilibrium is globally stable when 0>1. Next, we numerically simulated our analytical results and plotted these for various cases. Finally, we performed sensitivity analysis to tell us how each parameter in the system affects disease transmission.  相似文献   

14.
Global dynamics of a discretized SIRS epidemic model with time delay   总被引:1,自引:0,他引:1  
We derive a discretized SIRS epidemic model with time delay by applying a nonstandard finite difference scheme. Sufficient conditions for the global dynamics of the solution are obtained by improvements in discretization and applying proofs for continuous epidemic models. These conditions for our discretized model are the same as for the original continuous model.  相似文献   

15.
In this paper, we investigate global dynamics for a system of delay differential equations which describes a virus-immune interaction in vivo. The model has two distributed time delays describing time needed for infection of cell and virus replication. Our model admits three possible equilibria, an uninfected equilibrium and infected equilibrium with or without immune response depending on the basic reproduction number for viral infection R0 and for CTL response R1 such that R1<R0. It is shown that there always exists one equilibrium which is globally asymptotically stable by employing the method of Lyapunov functional. More specifically, the uninfected equilibrium is globally asymptotically stable if R0?1, an infected equilibrium without immune response is globally asymptotically stable if R1?1<R0 and an infected equilibrium with immune response is globally asymptotically stable if R1>1. The immune activation has a positive role in the reduction of the infection cells and the increasing of the uninfected cells if R1>1.  相似文献   

16.
In this paper, we study an SIS model on bipartite networks, in which the network structure and a connectivity-dependent infection scheme are considered. Applying the theory of the multigroup model, we prove the existence and the asymptotic stability of the endemic equilibrium. And then we examine the ratio between the densities of infected female and male individuals on the bipartite networks. In particular, we find that when the scale exponent (γF) of females is equal to and that of males (γM), the ratio is only determined by the scale exponents and the proportion between the infection rates of females and males (λF/λM). We also present a result for the ratio by numerical simulations when γFγM.  相似文献   

17.
In this paper we propose and study a three dimensional continuous time dynamical system modelling a three team consists of two preys and one predator with the assumption that during predation the members of both teams of preys help each other and the rate of predation of both teams are different. In this work we establish the local asymptotic stability of various equilibrium points to understand the dynamics of the model system. Different conditions for the coexistence of equilibrium solutions are discussed. Persistence, permanence of the system and global stability of the positive interior equilibrium solution are discussed by constructing suitable Lyapunov functional. At the end, numerical simulations are performed to substantiate our analytical findings.  相似文献   

18.
In this paper, applying two types of Lyapunov functional techniques to an SIRS epidemic model with graded cure and incomplete recovery rates, we establish complete global dynamics of the model whose threshold parameter is the basic reproduction number R0R0 such that the disease-free equilibrium is globally asymptotically stable when R0?1R0?1, and the endemic equilibrium is globally asymptotically stable when R0>1R0>1.  相似文献   

19.
This paper deals with global dynamics of an SIRS epidemic model for infections with non permanent acquired immunity. The SIRS model studied here incorporates a preventive vaccination and generalized non-linear incidence rate as well as the disease-related death. Lyapunov functions are used to show that the disease-free equilibrium state is globally asymptotically stable when the basic reproduction number is less than or equal to one, and that there is an endemic equilibrium state which is globally asymptotically stable when it is greater than one.  相似文献   

20.
In this paper, the global exponential stability and asymptotic stability of retarded functional differential equations with multiple time-varying delays are studied by employing several Lyapunov functionals. A number of sufficient conditions for these types of stability are presented. Our results show that these conditions are milder and more general than previously known criteria, and can be applied to neural networks with a broad range of activation functions assuming neither differentiability nor strict monotonicity. Furthermore, the results obtained for neural networks with time-varying delays do not assume symmetry of the connection matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号