首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
ZnO crystals doped with Cr, Mn, Fe and Co were grown by the flux method. The prepared crystals revealed no phase separation detectable by X-ray diffraction. Structure properties were characterized by Raman and photoluminescence spectroscopy. For ZnO:Co, Mn and Cr, no spontaneous ferromagnetic moment was observed up to T=2 K whereas for the ZnO:Fe crystals the m(H) curves suggest the existence of 5 nm superparamagnetic iron clusters. At low temperatures the m(H) curves can be interpreted as a superposition of major paramagnetic and minor antiferromagnetic contribution. The paramagnetic part corresponds to the presence of Co2+, Fe3+, Mn2+ ions and small Cr atom clusters.  相似文献   

2.
The optical absorption spectra of LiNbO3 (LN), Fe:LiNbO3 (Fe:LN), and Zn:Fe:LiNbO3 (Zn:Fe:LN) single crystals grown by Bridgman method were measured and compared. The absorption characteristics of the samples and the effects of growth process conditions on the absorption spectra were investigated. The Fe, Zn and Li concentrations in the crystals were analyzed by inductively coupled plasma (ICP) spectrometry. The results indicated that the overall Fe ion and Fe2+ concentration in Fe:LN and Zn:Fe:LN crystals increased along the growing direction. The incorporation of ZnO in Fe:LN crystal induced increase of Fe2+ in the crystal. Among Fe‐doped and Zn:Fe‐codoped LN single crystals, 3 mol% ZnO doped Fe:LN had a biggest change of Fe2+ ion concentration from bottom to top part of crystal. The effects of technical conditions (atmosphere and thermal history) on Fe2+ ion concentration were discussed. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
The crystal structure of a synthetic analog of the mineral lipscombite (Fe 2.3 2+ Fe 4.7 3+ )[PO4]4O2.7(OH)1.3 obtained under hydrothermal conditions in the LiF-Fe2O3-(NH4)2HPO4-H2O system is resolved (R = 0.040) by X-ray diffraction analysis (Bruker Smart diffractometer with a highly sensitive CCD detector, MoK α radiation): a = 14.776(3) Å, b = 14.959(3) Å, c = 7.394(1) Å, β = 119.188(4)°, sp. gr. C2/c, Z = 4, ρexp = 3.8 g/cm3, ρcalcd = 3.9 g/cm3. Fe2+ and Fe3+ cations are statistically distributed in each of four crystallographically independent positions, while occupying the corresponding octahedra with probabilities of 60, 90, 100, and 91%. The ratio Fe2+/Fe3+ in the composition of the crystals was established by Mössbauer spectroscopy. Lipscombite is interpreted as a mineral of variable composition described by the formula (Fe x 2+ Fe n?x 3+ )[PO4]4Oy(OH)4?y . The field of stability is determined as a function of the iron content and the ratio Fe2+/Fe3+. It is shown that at n = 6 iron cations are ordered in octahedra and barbosalite structure is formed. An interpretation of genetically and structurally related members of the lipscombite family within a unified polysomatic series is proposed.  相似文献   

4.
The structure of KDP crystals doped with trivalent (Al3+, Fe3+, Mn3+, V3+, and La3+) and divalent (Ni2+, Co2+, Fe2+, Mn2+, Ca2+, Sr2+, and Ba2+) cations was simulated by minimizing the energy of atomic interactions. Three types of defects were revealed: isolated defect centers formed by M 3+ and Ni2+ ions, cluster chain centers formed by M 2+ ions with ionic radii exceeding 0.9 Å, and complex centers formed via the replacement of potassium ions by large Ba2+ dopants with the simultaneous replacement of some of the phosphorus atoms by silicon ones. The corresponding energies of defect formation are calculated. The surface morphology of the crystal faces is studied. The changes in morphology in the presence of M 3+ dopants are caused by their adsorption, whereas for M 2+ dopants, these changes are caused mainly by their incorporation into the crystal structure.  相似文献   

5.
The defect structure of larger ammonium sulphate crystals, grown from aqueous solutions, has been studied by means of X-ray diffraction topography after Lang's method. Several types of dislocations were identified. Moreover it was found that no relationship exists between growth rate and dislocation density, which implies that crystal growth proceeds via two-dimensional nucleation. No difference was found in the defect structure of crystals grown from pure water solutions and from aqueous solutions with 10 – 20% glycerine as additive: In both cases neither growth bands nor sector boundaries were found. On the other hand, crystals grown in aqueous solutions contaminated with Mn2+ and Fe3+ revealed growth bands and for Fe3+ a mosaic-like structure.  相似文献   

6.
The crystal structure of a new mineral, ikranite, of the eudialyte group discovered in the Lovozero massif (the Kola Peninsula) was established by X-ray diffraction analysis. The crystals belong to the trigonal system and have the unit-cell parameters a = 14.167(2) Å, c = 30.081(2) Å, V = 5228.5 Å 3, sp. gr. R3m. Ikranite is the first purely ring mineral of the eudialyte group (other minerals of this group contain ring platforms of either tetrahedral or mixed types). It is also the first representative of the eudialyte group where Fe3+ prevail over Fe2+ ions.  相似文献   

7.
The structures of natural iron-rich eudialyte (specimen 3458 from the Khibiny massif, the Kola Peninsula) and two heat-treated samples of this mineral calcined at 700 and 800°C were determined by X-ray diffraction. The trigonal unit-cell parameters (sp. gr. R3m) are as follows: a = 14.2645(1) Å, c = 29.9635(5) Å; a = 14.1307(1) Å, c = 30.1229(3) Å; a = 14.1921(2) Å, c = 30.2417(5) Å, respectively. It was found that Fe3+ ions in the calcined eudialytes, as well as impurities in the starting specimen, occupy the square-pyramidal Fe3+(V) sites, whereas Fe2+ ions are in the planar-tetragonal Fe2+(IV) sites.  相似文献   

8.
The electron-spin resonance spectra of Mn2+ ions and nuclear-quadrupole resonance spectra of 175Lu are investigated to find out the possibility of implementing the technique of dynamic alignment of nuclei using LuNbO4 single crystals doped with Mn2+. An estimate for the electron-spin resonance frequency of Mn2+ ions is obtained, and the temperature dependences of the quadrupole coupling constant eQq and the anisotropy parameter that characterizes the asymmetry of the electric field gradient at 175Lu nuclei are studied. It is demonstrated that LuNbO4 single crystals doped with Mn2+ ions can be used as working media in experiments on dynamic alignment of nuclei.  相似文献   

9.
First-row transition metal ions in lead-silicate glasses of composition: 37.9% mol PbO, 61.8% mol SiO2 have been studied with regard to the oxidation state and the coordination by means of optical and magnetic measurements. Optical spectra have been recorded at 300 and 77 K. All the observed bands are assigned as being due to d-d transitions in Td and/or Oh fields. Magnetic moments are of the order of the spin-only values. By ESR measurements we reveal and quantify titanium, vanadium and manganese oxidation states not detectable by the other techniques.It turns out that the various metal ions have the following oxidation states: Ti3+ and Ti4+, V4+ and V5+, Cr3+ and Cr6+, Mn2+ and Mn3+, Fe3+, Co2+, Ni2+, Cu2+. The coordination is 4-fold for Ti4+ and V5+ and 6-fold for Mn3+ and Cu2+. Moreover it has been found that Fe3+, Co2+ and Ni2+ are both 4-fold and 6-fold coordinated and that Cr3+ and Cr6+ oxidation states coexist in the same sample.  相似文献   

10.
Double phosphates of zirconium and metals with an oxidation degree of +2 of the composition M0.5Zr2(PO4)3 (M = Mg, Ca, Mn, Co, Ni, Cu, Zn, Sr, Cd, and Ba) are synthesized and characterized by X-ray diffraction methods and IR spectroscopy. The crystal structures of all the compounds are based on three-dimensional frameworks of corner-sharing PO4-tetrahedra and ZrO6-octahedra. Phosphates with large Cd2+, Ca2+, Sr2+, and Ba2+ cations octahedrally coordinated with oxygen atoms form rhombohedral structures (space group R3), whereas phosphates with small tetrahedrally coordinated Mg2+, Ni2+, Cu2+, Co2+, Zn 2+, and Mn2+-cations are monoclinic (space group P21/n). The effect of various structure-forming factors on the M0.5Zr2(PO4)3 compounds with a common structural motif but different symmetries are discussed.  相似文献   

11.
The crystal structure of natural titanium-containing ludwigite has been refined. The unit-cell parameters are a = 9.260 ± 0.002 Å, b = 12.294± 0.002 Å, c = 3.0236± 0.0005 Å, sp. gr. Pbam, and R = 0.0288. The observed cation distribution over the M1-M4 positions corresponds to the structural formula (Mg0.5)(Mg1.0)(Mg0.338Fe 0.162 2+ )(Fe 0.47 3+ Ti 0.21 4+ Mg 0.15 2+ Al 0.10 3+ Fe 0.07 2+ (BO3)O2. Highly charged titanium ions in the M4 position are balanced mainly with magnesium and not with divalent iron ions.  相似文献   

12.
The pyroxferroite and pyroxmangite from xenoliths of aluminous gneisses in the alkaline basalts of Bellerberg paleovulcano (Eifel, Germany) have been studied by electron-probe and X-ray diffraction methods and IR spectroscopy. The parameters of the triclinic unit cells are found to be a = 6.662(1) Å, b = 7.525(1) Å, c = 15.895(2) Å, α = 91.548(3)°, β = 96.258(3)°, and γ = 94.498(3)° for pyroxferroite and a = 6.661(3) Å, b = 7.513(3) Å, c = 15.877(7) Å, α = 91.870(7)°, β = 96.369(7)°, and γ = 94.724(7)° for pyroxmangite; sp. gr. \(P\overline 1 \). The crystallochemical formulas (Z = 2) are, respectively, M(1–2)(Mn0.5Ca0.4Na0.1)2M(3–6)(Fe, Mn)4M7[Mg0.6(Fe, Mn)0.4][Si7O21] and M(1–3)(Mn, Fe)3M(4–6)[(Fe, Mn)0.7Mg0.3]3M7[Mg0.5(Fe, Mn)0.5][Si7O21]. For these and previously studied representatives of the pyroxmangite structural type, an analysis of the cation distribution over sites indicates wide isomorphism of Mn2+, Fe2+, and Mg in all cation M(1–7) sites and the preferred incorporation of Сa and Na into large seven-vertex M1O7 and M2O7 polyhedra and Mg into the smallest five-vertex M7O5 polyhedron.  相似文献   

13.
A crystallizer for growing large single crystals from solution under steady-state concentration convection conditions is described. The crystallizer has only one vessel divided by a drilled plate in two compartments kept at different temperatures. The convection of concentration occurs through the dividing plate between the compartments. The crystallizer was used for growing KDP and TGS single crystals. Mass- and heat transfer equations are derived. Growth rate calculations may be carried out using the derived equations. Growth rate measurements of KDP crystals have been performed. The overall heat transfer coefficient for the transfer of heat through the dividing plate is also experimentally determined. Light absorption, ESR and Mössbauer spectra have shown the presence of Fe+2, Cr+3 and Mn+2 ions in the (100) greenish zones of KDP crystals.  相似文献   

14.
The EPR spectra of Fe3+ impurity ions in NaZr2(PO4)3 single crystals at 300 K are investigated, and the spin Hamiltonian of these ions is determined. A comparative analysis of the spin-Hamiltonian and crystal-field tensors is performed using the maximum invariant component method. It is demonstrated that Fe3+ impurity ions substitute for Zr4+ ions with local compensator ions located in cavities of the B type. It is revealed that the invariant of the spin-Hamiltonian tensor B4 and the crystal-field tensor V 4 44 depend substantially on the mutual arrangement of ions in the first and second coordination spheres. The corresponding dependences are analyzed.  相似文献   

15.
The crystal structure of the Na,Ca-amphibole magnesioferrikatophorite found in carbonatites from the Turiy Cape (Kola Peninsula) was refined (Siemens P4 diffractometer, λMoK α radiation, 1481 independent reflections with |F|>4σ(F), anisotropic refinement, R(F) = 0.039). The parameters of the monoclinic unit cell are a = 9.875(5) Å, b = 18.010(8) Å, c = 5.309(3) Å, β = 104.39(5)°, sp. gr. C2/m, Z = 2. The distribution of the cations over the crystallographically nonequivalent M(1–4)-positions was revealed by Mössbauer spectroscopy and X-ray diffraction analysis. The character of splitting of the A-position correlates with the characteristic features of the magnesioferrikatophorite composition. The resulting structural formula (Na0.87K0.13)Σ = 1 · (Na1.18Ca0.82)Σ = 2(Mg1.41Fe 0.42 3+ Ti 0.17 4+ )Σ= 2 Fe 1.31 3+ Mg0.69)Σ = 2(Mg0.60Fe 0.38 2+ Mn0.02)Σ = 1(Si3.16Al0.84)Σ = 4 · Si4O22(O1.05OH0.66F0.29)Σ= 2 agrees well with the electron microprobe analysis data. Based on the zonal character of the crystal and high Fe 3+ content, the conditions of crystallogenesis are defined as oxidative against the background of a decrease in the Na potential in the course of the evolution of a mineral-forming system.  相似文献   

16.
Single crystals of Mn2+ doped calcium levo‐ tartrate tetrahydrate (CLTT) were grown by single diffusion gel growth technique in silica hydro‐gel media. The doping of Mn2+ was varied by mixing 0.001M, 0.005M, 0.01M, 0.05M, and 0.1M solutions of MnCl2 with 1M CaCl2 solution in equal volumes in the supernatant solutions. The actual amount of Mn2+ doping in CLTT crystals was estimated by ICP (Inductively Coupled Plasma) technique. The powder XRD of the samples suggested no significant change in the unit cell dimensions and the presence of any extra phase. The FT‐IR spectra indicated the presence of water molecule, O‐H bond, C‐O bond and carbonyl C=O bond. The EPR spectra confirmed the presence of Mn2+ ions in the crystals. The variation of the dielectric constant with temperature confirmed the earlier results of pure calcium tartrate crystals and indicated the ferroelectric nature of the doped crystals. As the amount of doping of Mn2+ increased the value of dielectric constant increased. The results are discussed. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
A specimen of a new representative of the palygorskite-sepiolite family from Aris phonolite (Namibia) is studied by single-crystal X-ray diffraction. The parameters of the triclinic (pseudomonoclinic) unit cell are as follows: a = 5.2527(2) Å, b = 17.901(1) Å, c = 13.727(1) Å, α = 90.018(3)°, β = 97.278(4)°, and γ = 89.952(3)°. The structure is solved by the direct methods in space group P \(\bar 1\) and refined to R = 5.5% for 4168 |F| > 7σ(F) with consideration for twinning by the plane perpendicular to y (the ratio of the twin components is 0.52: 0.48). The crystal chemical formula (Z = 1) is (Na1.6K0.2Ca0.2)[Ca2(Fe 3.6 2+ Al1.6Mn0.8)(OH)9(H2O)2][(Fe 3.9 2+ Ti0.1)(OH)5(H2O)2][Si16O38(OH)2] · 6H2O, where the compositions of two ribbons of octahedra and a layer of Si tetrahedra are enclosed in brackets. A number of specific chemical, symmetrical, and structural features distinguish this mineral from other minerals of this family, in particular, from tuperssuatsiaite and kalifersite, which are iron-containing representatives with close unit cell parameters.  相似文献   

18.
New sodium iron orthophosphate NaFe 4 2+ Fe 3 3+ [PO4]6 was synthesized by the hydrothermal method. The crystal structure (sp. gr. $P\bar 1$ ) was established by the heavy-atom method, with the exact chemical formula of the compound being unknown; R hkl = 0.0492, R whkl = 0.0544, S = 0.52. The new compound is analogous to iron phosphate Fe 3 2+ Fe 4 3+ [PO4]6 studied earlier. However, these two compounds differ in the Fe2+ and Fe3+ contents, because Na+ ions in the new compound are located at the centers of symmetry not occupied earlier.  相似文献   

19.
It is shown by means of investigation of both optical absorption spectra and Roentgen K-lines of chromium doped in LiKSO4, LiNaSO4, and Li2SO4 · H2O crystals, that X-irradiation results in change of the impurity charge in a following way: Cr3+ + h → Cr4, Cr4+ + h → Cr5+.  相似文献   

20.
The physico-chemical analytical data on the systems ZnSO4(MgSO4)–CuSO4(FeSO4, CoSO4 resp.)–H2O at 25.0°C have shown that due to isodimorphous substitution of Zn2+, Mg2+ resp., in the orthorhombic crystals of ZnSO4 · 7 H2O MgSO4 · 7 H2O, resp. for Cu2+, Fe2+ or Co2+ above a specific degree of ionic substitution, the orthorhombic crystals are converted into monoclinic mixed crystals. The crystal phases are characterized by X-ray diffraction, microscopic and optical studies. The dominant effect of the admixed Cu2+, Fe2+, Co2+ ions is explained in terms of their electronic configurations, for which, owing to the operation of the Jahn-Teller effect, a deformation of the regular octahedral arrangement of the water ligands about the metal ion is found to occur. The strongest deforming effect is that of Cu2+ ions followed by the Fe2+ ions, the weakest deforming effect being that of Co2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号