首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this study, a new approach is developed to solve the initial value problem for interval linear differential equations. In the considered problem, the coefficients and the initial values are constant intervals. In the developed approach, there is no need to define a derivative for interval-valued functions. All derivatives used in the approach are classical derivatives of real functions. The reason for this is that the solution of the problem is defined as a bunch of real functions. Such a solution concept is compatible also with the robust stability concept. Sufficient conditions are provided for the solution to be expressed analytically. In addition, on a numerical example, the solution obtained by the proposed approach is compared with the solution obtained by the generalized Hukuhara differentiability. It is shown that the proposed approach gives a new type of solution. The main advantage of the proposed approach is that the solution to the considered interval initial value problem exists and is unique, as in the real case.  相似文献   

2.
In this paper, we propose several heuristics for approximately solving the multiple-choice multidimensional knapsack problem (noted MMKP), an NP-Hard combinatorial optimization problem. The first algorithm is a constructive approach used especially for constructing an initial feasible solution for the problem. The second approach is applied in order to improve the quality of the initial solution. Finally, we introduce the main algorithm, which starts by applying the first approach and tries to produce a better solution to the MMKP. The last approach can be viewed as a two-stage procedure: (i) the first stage is applied in order to penalize a chosen feasible solution and, (ii) the second stage is used in order to normalize and to improve the solution given by the firs stage. The performance of the proposed approaches has been evaluated based problem instances extracted from the literature. Encouraging results have been obtained.  相似文献   

3.
A standard approach for solving linear partial differential equations is to split the solution into a homogeneous solution and a particular solution. Motivated by the method of fundamental solutions for solving homogeneous equations, we propose a similar approach using the method of approximate particular solutions for solving linear inhomogeneous differential equations without the need of finding the homogeneous solution. This leads to a much simpler numerical scheme with similar accuracy to the traditional approach. To demonstrate the simplicity of the new approach, three numerical examples are given with excellent results. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 506–522, 2012  相似文献   

4.
In this paper an iterative approach for obtaining approximate solutions for a class of nonlinear Fredholm integral equations of the second kind is proposed. The approach contains two steps: at the first one, we define a discretized form of the integral equation and prove that by considering some conditions on the kernel of the integral equation, solution of the discretized form converges to the exact solution of the problem. Following that, in the next step, solution of the discretized form is approximated by an iterative approach. We finally on some examples show the efficiency of the proposed approach.  相似文献   

5.
We present a new approach to handle uncertain combinatorial optimization problems that uses solution ranking procedures to determine the degree of robustness of a solution. Unlike classic concepts for robust optimization, our approach is not purely based on absolute quantitative performance, but also includes qualitative aspects that are of major importance for the decision maker.We discuss the two variants, solution ranking and objective ranking robustness, in more detail, presenting problem complexities and solution approaches. Using an uncertain shortest path problem as a computational example, the potential of our approach is demonstrated in the context of evacuation planning due to river flooding.  相似文献   

6.
《Applied Mathematical Modelling》2014,38(21-22):4972-4984
A sensitivity based approach is presented to determine Nash solution(s) in multiobjective problems modeled as a non-cooperative game. The proposed approach provides an approximation to the rational reaction set (RRS) for each player. An intersection of these sets yields the Nash solution for the game. An alternate approach for generating the RRS based on design of experiments (DOE) combined with response surface methodology (RSM) is also explored. The two approaches for generating the RRS are compared on three example problems to find Nash and Stackelberg solutions. For the examples presented, it is seen that the proposed sensitivity based approach (i) requires less computational effort than a RSM-DOE approach, (ii) is less prone to numerical errors than the RSM-DOE approach, (iii) has the ability to find multiple Nash solutions when the Nash solution is not a singleton, (iv) is able to approximate nonlinear RRS, and (v) on one example problem, found a Nash solution better than the one reported in the literature.  相似文献   

7.
We provide an efficient computational approach to solve the mixed integer programming (MIP) model developed by Tarim and Kingsman [8] for solving a stochastic lot-sizing problem with service level constraints under the static-dynamic uncertainty strategy. The effectiveness of the proposed method hinges on three novelties: (i) the proposed relaxation is computationally efficient and provides an optimal solution most of the time, (ii) if the relaxation produces an infeasible solution, then this solution yields a tight lower bound for the optimal cost, and (iii) it can be modified easily to obtain a feasible solution, which yields an upper bound. In case of infeasibility, the relaxation approach is implemented at each node of the search tree in a branch-and-bound procedure to efficiently search for an optimal solution. Extensive numerical tests show that our method dominates the MIP solution approach and can handle real-life size problems in trivial time.  相似文献   

8.
We consider two numerical solution approaches for the Dym initial value problem using the reproducing kernel Hilbert space method. For each solution approach, the solution is represented in the form of a series contained in the reproducing kernel space, and a truncated approximate solution is obtained. This approximation converges to the exact solution of the Dym problem when a sufficient number of terms are included. In the first approach, we avoid to perform the Gram-Schmidt orthogonalization process on the basis functions, and this will decrease the computational time. Meanwhile, in the second approach, working with orthonormal basis elements gives some numerical advantages, despite the increased computational time. The latter approach also permits a more straightforward convergence analysis. Therefore, there are benefits to both approaches. After developing the reproducing kernel Hilbert space method for the numerical solution of the Dym equation, we present several numerical experiments in order to show that the method is efficient and can provide accurate approximations to the Dym initial value problem for sufficiently regular initial data after relatively few iterations. We present the absolute error of the results when exact solutions are known and residual errors for other cases. The results suggest that numerically solving the Dym initial value problem in reproducing kernel space is a useful approach for obtaining accurate solutions in an efficient manner.  相似文献   

9.
In this paper, the bidirectional SK-Ramani equation is investigated by means of the extended homoclinic test approach and Riemann theta function method, respectively. Based on the Hirota bilinear method, exact solutions including one-soliton wave solution are obtained by using the extended homoclinic approach and one-periodic wave solution is constructed by using the Riemann theta function method. A limiting procedure is presented to analyze in detail the relations between the one periodic wave solution and one-soliton solution.  相似文献   

10.
Different solution strategies to the relaxed Saint-Venant problem are presented and comparatively discussed from a mechanical and computational point of view. Three approaches are considered; namely, the displacement approach, the mixed approach, and the modified potential stress approach. The different solution strategies lead to the formulation of two-dimensional Neumann and Dirichlet boundary-value problems. Several solution strategies are discussed in general, namely, the series approach, the reformulation of the boundary-value problems for the Laplace's equations as integral boundary equations, and the finite-element approach. In particular, the signatures of the finite-element weak solutions—the computational costs, the convergence, the accuracy—are discussed considering elastic cylinders whose cross sections are represented by piece-wise smooth domains.  相似文献   

11.
We study a class of capacity acquisition and assignment problems with stochastic customer demands often found in operations planning contexts. In this setting, a supplier utilizes a set of distinct facilities to satisfy the demands of different customers or markets. Our model simultaneously assigns customers to each facility and determines the best capacity level to operate or install at each facility. We propose a branch-and-price solution approach for this new class of stochastic assignment and capacity planning problems. For problem instances in which capacity levels must fall between some pre-specified limits, we offer a tailored solution approach that reduces solution time by nearly 80% over an alternative approach using a combination of commercial nonlinear optimization solvers. We have also developed a heuristic solution approach that consistently provides optimal or near-optimal solutions, where solutions within 0.01% of optimality are found on average without requiring a nonlinear optimization solver.  相似文献   

12.
This paper outlines a generalized, systematic design approach to solution of the non-convex quadratic programming problem. It is based on a previous formulation of utility of a general system in terms of efficiency and robustness of the system. The approach is to introduce a robustness term of arbitrary magnitude into the design utility function. Mathematically, this makes the problem convex. From a design approach, it yields a more general solution allowing specialization to proceed by decreasing robustness (on an initially convex utility surface in the feasible design space) until the region of the overall optimum is approached. The approach is mathematically related to the Metropolis technique of simulated annealing but a more systematic (less random) solution process is used. It is analogous also to the heuristic technique of Burkard and Bonniger. These two previous techniques are the most effective so far reported for the quadratic programming problem. The robustness approach provides an underpinning for each and opens up further solution options. Applications include layout of buildings and other constructed facilities and information technology layout problems.  相似文献   

13.
For a monotone reaction-diffusion system with or without time delay, a standard approach to show the existence of a mono-stable traveling wave solution is the monotone iteration that requires the construction of a pair of upper and lower solution. In this note we will show that the monotone iteration approach can be improved by just constructing an upper solution. This improvement gives more freedom for the construction of an upper solution.  相似文献   

14.
Determination of the time evolution of the scattering data for an inverse scattering transform solution of the forced Toda lattice appears to require an overspecification of the boundary condition at the end of the lattice. This appears in the form of an apparent need to specify the values of two functions at the boundary rather than one. We present three different approaches to the resolution of this problem. One approach gives the Maclaurin series (in time) for the scattering data. The second approach gives the scattering data in terms of the solution to a nonlinear, nonlocal partial differential equation. The third approach gives the scattering data in terms of the solution to a linear integral equation. All three approaches reduce to one the number of functions which must be specified to determine a solution. The advantages and limitations of each approach are discussed.  相似文献   

15.
Applying computationally expensive simulations in design or process optimization results in long-running solution processes even when using a state-of-the-art distributed algorithm and hardware. Within these simulation-based optimization problems the optimizer has to treat the simulation systems as black-boxes. The distributed solution of this kind of optimization problem demands efficient utilization of resources (i.e. processors) and evaluation of the solution quality. Analyzing the parallel performance is therefore an important task in the development of adequate distributed approaches taking into account the numerical algorithm, its implementation, and the used hardware architecture. In this paper, simulation-based optimization problems are characterized and a distributed solution algorithm is presented. Different performance analysis techniques (e.g. scalability analysis, computational complexity) are discussed and a new approach integrating parallel performance and solution quality is developed. This approach combines a priori and a posteriori techniques and can be applied in early stages of the solution process. The feasibility of the approach is demonstrated by applying it to three different classes of simulation-based optimization problems from groundwater management.  相似文献   

16.
This article presents a simulation-based methodology for finding optimal investment strategy for long-term financial planning. The problem becomes intractable due to its size or the properties of the utility function of the investors. One approach is to make simplifying assumptions regarding the states of the world and/or utility functions in order to obtain a solution. These simplifications lead to the true solution of an approximate problem. Our approach is to find a good approximate solution to the true problem. We approximate the optimal decision in each period with a low dimensional parameterization, thus reformulating the problem as a non-linear, simulation-based optimization in the parameter space. The dimension of the reformulated optimization problem becomes linear in the number of periods. The approach is extendable to other problems where similar solution characteristics are known.  相似文献   

17.
Most existing methods of quadratically constrained quadratic optimization actually solve a refined linear or convex relaxation of the original problem. It turned out, however, that such an approach may sometimes provide an infeasible solution which cannot be accepted as an approximate optimal solution in any reasonable sense. To overcome these limitations a new approach is proposed that guarantees a more appropriate approximate optimal solution which is also stable under small perturbations of the constraints.  相似文献   

18.
本文对N个同型部件冷贮备的可靠性模型首次提出了一类扩散估计的近似算法理论,利用这个近似算法,首先给出了系统的一个基本循回过程的向前扩散偏微分方程,然后得到了这个偏微分方程在格占 上的近似瞬态解和稳太上的近似瞬态解和稳态解,最后给出了系统稳态可靠性指标的上下估计界,算便表明这个近似算法简便易行,对大系统的可靠性研究是有效的。  相似文献   

19.
In this paper we consider the transversal deflections of a dynamically-coupled Von Kármán system consisting of a plate which has a beam attached to its one edge. The problem is considered in the form of a non-linear evolution problem in a product space. We show the existence of a unique local solution by following a fractional powers approach to first construct a “weak” solution in a larger space. Regularity properties for this solution yield a unique local strong solution for the original boundary-value problem. This approach entails the introduction of fractional powers of a pair of matrices.  相似文献   

20.
When locating public facilities, the distribution of travel distances among the service recipients is an important issue. It is usually tackled with the minimax (center) solution concept. The minimax solution concept, despite the most commonly used in the public sector location models, is criticized as it does not comply with the major principles of the efficiency and equity modeling. In this paper we develop a concept of the lexicographic minimax solution (lexicographic center) being a refinement of the standard minimax approach to location problems. We show that the lexicographic minimax approach complies with both the Pareto-optimality (efficiency) principle (crucial in multiple criteria optimization) and the principle of transfers (essential for equity measures) whereas the standard minimax approach may violate both these principles. Computational algorithms are developed for the lexicographic minimax solution of discrete location problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号