首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
平面激波在圆柱上的反射与绕射是目前国内外研究激波非线性复杂现象的典型课題。近年来,Takayama(1987)在入射激波马赫数M_i=1.3及2.6的条件下,得到了在圆柱周围的激波绕射与反射的光测实验结果。众所周知,激波在圆柱上的反射与绕射是一非定常现象,为了了解和分析整个非定常过程的发展和变化,应得到圆柱后较远区域的结果。本文利用两次曝光全息激光干涉仪不仅得到了圆柱周围的波系图案,而且也得到了激波脱离圆柱后驻点后约10倍圆柱直径的范围内的流动形态。同时也给出了不同M_i条件下的三波点轨迹和入射激波与反射激波之间夹角ω随距离变化的实验结果。  相似文献   

2.
壁面对串列双圆柱尾迹影响的实验研究   总被引:1,自引:0,他引:1  
陈波  李万平 《实验力学》2011,26(4):404-410
为研究壁面对近壁等直径串列双圆柱尾迹特性的影响,用PIV和压力传感器测量尾迹湍流的涡结构及频谱.实验在循环水槽内进行,基于圆柱直径D的雷诺数为1696,壁面边界层厚度为6.6D.影响尾迹流场结构的两个重要的特征参数是T/D和G/D(T为两圆柱中心间的距离,G为圆柱下表面与壁面间的距离),文中主要考察G/D的影响.实验中...  相似文献   

3.
王辉 《力学与实践》2010,32(4):18-21
圆柱间气动干扰研究具有重要的理论和现实意义.尽管国内外开展了圆柱组合风效应的风洞试验研究,但主要针对等直径圆柱,并且雷诺数多为10~5以下.考虑到工程结构风场的高雷诺数特征,采用数值模拟方法,模拟两不等直径圆柱在串列、并列及交错排列下的高雷诺数(Re=4.5×10~5)时均绕流场.通过改变组合的间距和风向,分析探讨两柱阻力、升力及总风力的变化规律.  相似文献   

4.
不同控制角下附加圆柱对圆柱涡激振动影响   总被引:4,自引:2,他引:2  
陈威霖  及春宁  许栋 《力学学报》2019,51(2):432-440
在弹性支撑的圆柱周围布置直径更小圆柱会影响剪切层发展以及旋涡脱落,进而改变其涡激振动状态.通过不同的布置形式和附加小圆柱个数可以实现对圆柱涡激振动的促进或抑制.激励更大幅值的振动可以更好地将水流动能转化为可利用的机械能或电能,抑制其振动则可以实现对海洋平台等结构物的保护.采用基于迭代的嵌入式浸入边界法对前侧对称布置两个小圆柱的圆柱涡激振动进行数值模拟研究,系统仅做横向振动,其中基于主圆柱直径的雷诺数为100,质量比为2.0,折合流速为3~11.小圆柱与主圆柱的直径比为0.125,间隙比为0.125.结果表明,在研究的控制角范围内(30°~90°),附加小圆柱可以很大程度上改变圆柱涡激振动的状态.当控制角较小(30°)时,附加小圆柱对主圆柱的振动起抑制作用;当控制角为45°~60°时,圆柱的振动分为涡振和弛振两个阶段,在弛振阶段,圆柱振幅随折合流速增加而持续增加;当控制角较大(75°~90°)时,附加小圆柱的促进作用随着控制角增加而减小.进一步地,结合一个周期内不同时刻旋涡脱落以及圆周压强分布,解释了附加小圆柱对主圆柱涡激振动的作用机制.应用能量系数对圆柱系统的进一步分析发现,弛振阶段由流体传递到主圆柱的能量系数随折合流速的增加逐渐下降,旋涡结构的改变是产生这种变化的直接原因.   相似文献   

5.
利用二级轻气炮加载,进行了球状2A12铝弹丸垂直撞击圆柱壳自由梁实验。并进行了弹丸速度、圆柱壳直径和壁厚等因素对穿孔直径影响的数值模拟,数值模拟结果和实验结果基本吻合。通过量纲分析和数值模拟结合,推导了穿孔直径与相关影响参数的经验关系式。研究结果表明:当圆柱壳直径和厚度不变时,高速撞击产生的穿孔直径在径向和轴向都随着弹丸速度增大而增大;当弹丸速度和圆柱壳厚度不变时,高速撞击产生的穿孔直径随着圆柱壳自由梁直径的增大而减小;当弹丸速度和圆柱壳直径不变时,穿孔直径随着圆柱壳厚度的增大而减小。  相似文献   

6.
采用改进的延迟分离涡方法数值模拟了高雷诺数下的柱体绕流,包括单圆柱绕流、单方柱绕流、串列双圆柱绕流和串列双方柱绕流,研究了不同雷诺数下圆柱绕流与方柱绕流的水动力特性.计算结果与实验数据及其他文献的数值计算结果吻合良好,研究表明,单方柱绕流在2.0×10~3Re1.0×10~7范围内未出现类似于单圆柱绕流的阻力危机现象,其平均阻力系数C_d、升力系数均方根C'_1及斯特劳哈尔数S t维持在一定范围内波动.串列双圆柱绕流与串列双方柱绕流中,均选取L/D=2.0,2.5,3.0,3.5和4.0这五中间距比进行计算.串列双圆柱绕流中,当Re=2.2×10~4时,在3.0L/D3.5内存在一临界间距比(L_c/D)使得L_c/D前后上下游圆柱的升阻力系数发生跳跃性变化,且当L/DL_c/D时,下游圆柱的阻力系数为负数.而当Re=3.0×10~6时,则不存在临界间距比,且下游圆柱的阻力系数始终为正数.串列双方柱绕流在Re=1.6×10~4和Re=1.0×10~6两种工况下的临界间距比分别处于3.0L/D3.5和3.5L/D4.0区间内,且当L/DL_c/D时,两个雷诺数下的下游方柱阻力系数均为负数.  相似文献   

7.
大湍流度高雷诺数时并列双圆柱的平均和脉动压力分布   总被引:7,自引:0,他引:7  
本文通过风洞实验研究了来流湍流度,Iu=10%雷诺数分别为Re=1.95×10~9和Re=6.5×10~5时单个圆柱和不同间距比下并列双圆柱的平均和脉动压力分布。结果表明:在Re=1.95×10~5时单个圆柱的平均压力分布类似于低湍流度高超临界雷诺数时的压力分布;当雷诺数增大至6.5×10~5时,绕圆柱表面流动的分离点前移和背压绝对值提高,总的阻力系数随之增加。并列双圆柱的间距比变化对圆柱表面压力分布影响很大,在极小间距比(N/d=1.05)时,双圆柱间的缝隙流使附近柱面产生高达-5的压力系数峰值(Re=6.5×10~5),同时脉动压力也大为增加;在较小间距比时(1.5  相似文献   

8.
轴压作用下充液圆柱壳屈曲的实验研究   总被引:2,自引:0,他引:2  
本文从实验及理论两个方面对充满液体的圆柱壳在轴向压力作用下液体内压的变化进行了实际测试及理论定性分析.采用薄壳理论分析了屈曲前液体内压随轴向压力的变化规律,讨论了壳材料、几何参数及边界约束对内压的影响.通过实验实际测定了内压随轴向压力的变化规律.通过实验手段测定了充满液体的圆柱壳临界载荷、屈曲模态,讨论了充满液体的圆柱壳的承载能力等问题.  相似文献   

9.
本文给出了关于亚临界雷诺数二维圆柱绕流动态特性的实验结果。应用热膜、热线和压力传感器测量了壁面剪切应力脉动、壁面压力脉动和流场的速度脉动,给出了壁面剪切应力脉动频率在驻点附近和分离前后变化的特征,计算了这些脉动量在圆柱面上任意两点间的相关特性。实验结果表明,在亚临界雷诺数二维圆柱绕流的边界层流场中存在着一个频率与涡脱落频率相同的整体同步脉动。  相似文献   

10.
王赛  邵传平 《力学学报》2012,44(4):787-791
用隔离板对直径为D, 沿流向振荡的圆柱后涡脱落进行抑制. 隔离板放于圆柱尾流中心线上,控制参数包括隔离板长度L/D以及隔离板前缘到柱体振荡中心的距离G/D. 实验的雷诺数范围Re=VD/v=1.01×104~1.69×104,柱体折减振频范围feD/V=0~0.03, 柱体振幅固定为A/D=0.2. 风洞烟线显示和热线测量结果表明:当 G/D位于一个有效区域内时,可有效抑制振荡柱体尾流的旋涡脱落. 该有效区的大小随着隔离板板长的增大而增大, 随着Re数和圆柱振荡频率的增大而减小.  相似文献   

11.
A large eddy simulation (LES) study was conducted to investigate the three-dimensional characteristics of the turbulent flow past wavy cylinders with yaw angles from 0° to 60° at a subcritical Reynolds number of 3900. The relationships between force coefficients and vortex shedding frequency with yaw angles for both wavy cylinders and circular cylinders were investigated. Experimental measurements were also performed for the validation of the present LES results. Comparing with corresponding yawed circular cylinders at similar Reynolds number, significant differences in wake vortex patterns between wavy cylinder and circular cylinder were observed at small yaw angles. The difference in wake pattern becomes insignificant at large yaw angles. The mean drag coefficient and the Strouhal number obey the independence principle for circular cylinders at yaw angle less than 45°, while the independence principle was found to be unsuitable for yawed wavy cylinders. In general, the mean drag coefficients and the fluctuating lift coefficients of a yawed wavy cylinder are less than those of a corresponding yawed circular cylinder at the same flow condition. However, with the increase of the yaw angle, the advantageous effect of wavy cylinder on force and vibration control becomes insignificant.  相似文献   

12.
The flow characteristics around an elliptic cylinder with an axis ratio of AR=2 located near a flat plate were investigated experimentally. The elliptic cylinder was embedded in a turbulent boundary layer whose thickness is larger than the cylinder height. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The Reynolds number based on the height of the cylinder cross-section was 14000. The pressure distributions on the cylinder surface and on the flat plate were measured for various gap distances between the cylinder and the plate. The wake velocity profiles behind the cylinder were measured using hot-wire anemometry. In the near-wake region, the vortices are shed regularly only when the gap ratio is greater than the critical value of G/B=0·4. The critical gap ratio is larger than that of a circular cylinder. The variation of surface pressure distributions on the elliptic cylinder with respect to the gap ratio is much smaller than that on the circular cylinder. This trend is more evident on the upper surface than the lower one. The surface pressures on the flat plate recover faster than those for the case of the circular cylinder at downstream locations. As the gap ratio increases, the drag coefficient of the cylinder itself increases, but the lift coefficient decreases. For all gap ratios tested in this study, the drag coefficient of the elliptic cylinder is about half that of the circular cylinder. The ground effect of the cylinder at small gap ratio constrains the flow passing through the gap, and restricts the vortex shedding from the cylinder, especially in the lower side of the cylinder wake. This constraint effect is more severe for the elliptic cylinder, compared to the circular cylinder. The wake region behind the elliptic cylinder is relatively small and the velocity profiles tend to approach rapidly to those of a flat plate boundary layer  相似文献   

13.
在雷诺数Re=200的情况,利用Maxwell方程直接数值计算表面包覆电极与磁极圆柱体产生的电磁力分布,将其加入到动量方程中,在各种电磁力作用参数和电磁极宽度的组合下,对表面覆盖电磁极圆柱体在弱电解质中的绕流场结构及其升阻力特性进行了数值模拟与分析.结果表明,当电磁极宽度较小时,圆柱体绕流场的分离点越容易接近后驻点,而电磁力对总阻力的影响并不明显,但对压差和摩擦阻力均有明显影响.当电磁极宽度较大时,圆柱体尾部区域越容易产生射流现象,而且总阻力随电磁力作用参数和电磁极宽度增大而减小.在电磁力尚不足以完全抑制周期性涡脱落的情况下,升力幅值随电磁力作用参数增大而减小,但随电磁极宽度则先减小后略有增加,升力脉动频率则均随电磁力作用参数和电磁极宽度增大而增加.研究表明,电磁力可以有效地改善圆柱体绕流场结构,达到减小圆柱体阻力并抑制其脉动升力之目的,因此是圆柱型结构的一种有效流动控制手段.  相似文献   

14.
The numerical study of the flow past a circular cylinder forced to oscillate transversely to the incident stream is presented herein, at a fixed Reynolds number equal to 106. The finite element technique was favoured for the solution of the Navier–Stokes equations, in the formulation where the stream function and the vorticity are the field variables. The cylinder oscillation frequency ranged between 0·80 and 1·20 of the natural vortex-shedding frequency, and the oscillation amplitude extended up to 50% of the cylinder diameter. Since the resolution of the characteristics of synchronized wakes is the focus of the study, the first task is the determination of the boundary of the lock-in region. The computation revealed that, when the cylinder oscillation frequency exceeds the frequency of the natural shedding of vortices, the flow is not absolutely periodic at subsequent cycles but a quasiperiodic flow pattern occurs, which creates difficulty in the determination of the lock-in boundary. The time histories of the drag and lift forces for various oscillation parameters are presented, while the vorticity contours were favoured for the numerical flow visualization. The hydrodynamic forces, the phase angle between the lift force and the cylinder displacement, and the parameters of the wake geometry when steady state was reached, are presented in cumulative diagrams. These diagrams indicate the effect of the oscillation parameters on the hydrodynamic forces and on the wake geometry.  相似文献   

15.
邹琳  左红成  柳迪伟  王家辉  徐劲力 《力学学报》2022,54(11):2970-2983
基于定常吹吸气对波浪型圆柱近尾迹流动进行控制以增强柱体振动, 采用大涡模拟研究了亚临界雷诺数(Re = 3000)下前吹后吸和前后吸气控制方式在不同吹吸气工况对波浪型圆柱升阻力特性、时均压力系数、环量、湍动能及近尾迹流动结构的影响. 研究发现: 前吹后吸和前后吸气控制下波浪型圆柱在不同吹吸气动量系数工况脉动升力系数均显著提高, 最大较未受控直圆柱和波浪型圆柱分别提升高达636%和391%, 这主要可能归因于吹吸气控制使波浪型圆柱回流区变短, 高强度涡集中向钝体后方靠拢, 旋涡形成长度缩短, 展向涡流与顺流向涡流相互作用在波浪型圆柱下游形成的“肋状涡”变大变长, 近尾迹环量显著增大, 从而导致脉动升力系数增大, 这可能将诱导柱体产生更强的振动; 同时两种控制方式均改变了波浪型圆柱表面的压力分布, 由于在波浪型圆柱前驻点吹气使前端趋于流线型, 前吹后吸在不同吹吸气动量系数下波浪型圆柱的高压区减小, 但在后驻点吸气使得低压区增大, 而前后吸气在不同吹吸气动量系数下波浪型圆柱的高压区基本不变, 低压区增大. 研究结果可为低风速地区分布式风力俘能结构俘能效率提升提供基础理论支持.   相似文献   

16.
The performance of active control of vortex shedding from a circular cylinder is studied experimentally with rotational feedback oscillations. The optimization of the control parameters, such as the phase lag, the feedback gain, and the position of reference sensor are carried out using neural networks to minimize the reference velocity fluctuations in the cylinder wake. Measurement of pressure distributions over the circular cylinder under the optimum control indicate that the drag force is reduced by 16% and the lift force is suppressed by more than 70% in comparison with the stationary cylinder.  相似文献   

17.
Semi-empirical models for unsteady lift and drag are developed to predict the spectral features of the unsteady forces on a finite-length, right circular cylinder in cross-flow. In general, the models consist of two parts; the spatial variation of r.m.s wall pressure on the cylinder, and the correlation lengths which describe the spatial extent of the correlation of the unsteady wall pressures. Experiments were conducted in a low noise wind tunnel as a function of cylinder diameter Reynolds number (19 200<Re<32 000) and the Strouhal number (0·05< St<3·33), to measure the statistics of the unsteady wall pressures on a model cylinder. These results are incorporated into the theoretical models, and predictions of the spectral characteristics of the lift and drag are made. The r.m.s. wall pressures on the cylindrical surface are found to have the largest amplitude near the cylinder end-cap, and on the rearward portion of the cylinder body. The high levels in these locations are attributed to the separated flow region over the end-cap. The circumferential and axial length-scales decrease exponentially with Strouhal number. Both length-scales exhibit maxima near the Strouhal shedding frequency of St=0·21. The axial length-scales are found to depend on the measurement reference location due to the three-dimensional flow and separated flow region near the end-cap. The unsteady lift and drag predictions using the models developed in this work agree well with previously measured unsteady force data measured on inertial hydrophones exposed to flow. The broadband unsteady lift is found to be greater than the broadband unsteady drag by nominally 3dB.  相似文献   

18.
This study developed a two-dimensional generalized vortex method to analyze the shedding of vortices and the hydrodynamic forces resulting from a solitary wave passing over a submerged circular cylinder placed near a flat seabed. Numerical results for validation are compared with other numerical and experimental results, and satisfactory agreement is found. A series of simulations were performed to study the effects of gap-to-diameter ratio and incident wave height on vorticity pattern as well as the forces exerted on the cylinder. The range of the heights of incident waves is from 0.3h to 0.7h, where h is the still water depth. The range of the gap-to-diameter ratios is from 0.1 to 0.8. The results indicate that the flow pattern and the pressure distribution change significantly because of the close proximity of the seabed where the vorticity flux on the seabed-side surface of the cylinder is suppressed. Placing the cylinder nearer the seabed increases the drag and the positive lift on the cylinder. When the gap-to-diameter ratio increases, the pattern of vortices changes because of the interaction between the main recirculation zone and the shear layers separated from the gap. The maxima of drag, lift and total force increase linearly with the height of the incident wave.  相似文献   

19.
A numerical study on the flow past a square cylinder placed parallel to a wall, which is moving at the speed of the far field has been made. Flow has been investigated in the laminar Reynolds number (based on the cylinder length) range. We have studied the flow field for different values of the cylinder to wall separation length. The governing unsteady Navier–Stokes equations are discretized through the finite volume method on a staggered grid system. A SIMPLE type of algorithm has been used to compute the discretized equations iteratively. A shear layer of negative vortex generates along the surface of the wall, which influences the vortex shedding behind the cylinder. The flow‐field is distinct from the flow in presence of a stationary wall. An alternate vortex shedding occurs for all values of gap height in the unsteady regime of the flow. The strong positive vortex pushes the negative vortex upwards in the wake. The gap flow in the undersurface of the cylinder is strong and the velocity profile overshoots. The cylinder experiences a downward force for certain values of the Reynolds number and gap height. The drag and lift are higher at lower values of the Reynolds number. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Three-dimensional Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are performed to investigate the shear effects on flow around a circular cylinder at Reynolds numbers of Re=60–1000. The shear parameter, β, which is based on the velocity gradient, cylinder diameter and upstream mean velocity at the center plane of the cylinder, varies from 0 to 0.30. Variations of Strouhal number, drag and lift coefficients, and unsteady wake structures with shear parameter are studied, along with their dependence on Reynolds number. The presented simulation provides detailed information for the flow field around a circular cylinder in shear flow. This study shows that the Strouhal number exhibits no significant variation with shear parameter. The stagnation point moves to the high-velocity side almost linearly with shear parameter, and this result mainly influences the aerodynamic forces acting on a circular cylinder in shear flow. Both the Reynolds number and shear parameter influence the movement of the stagnation point and separation point. Mode A wake instability is suppressed into parallel vortex shedding mode at a certain shear parameter. The lift force increases with increasing shear parameter and acts from the high-velocity side to the low-velocity side. In addition, a simple method to estimate the lift force coefficient in shear flow is provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号