首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report for the first time a simple low-cost electrochemical route to synthesis of diameter-controlled hierarchical flowerlike gold microstructures with "clean" surfaces using gold nanoplates or nanopricks as building blocks without introducing any template or surfactant.  相似文献   

2.
金纳米簇是一种具有发光性能的“类分子”新兴纳米材料.通过调控金原子数目和配体组成性质,金纳米簇可以实现同激发光下不同波段发射,从而展现出“五彩缤纷”的发光特性,这使其被广泛应用于光催化、光学器件、传感和成像等多个领域.因此,开发和优化具有优异发光性能的金纳米簇一直是化学、材料和生物学科的研究热点.本文立足于金纳米簇的发...  相似文献   

3.
We describe a method for the synthesis of gold nanoparticles in a stainless steel continuous flow tubular reactor using tetrachloroauric acid as a precursor but without using a classical reducing agent. Gold(III) ion is reduced by stainless steel to form gold nanoparticles which are collected at the end of the coil. A single-phase system is introduced that generates dispersed nanoparticles in the absence of reducing agents on their surface. By controlling flow rates and temperature, the size of the nanoparticles can be tuned in the range from 24 nm to 36 nm. The reproducibility of the preparation was investigated, relative standard deviation of both the wavelength of the peak and the intensity of the plasmonic absorption band were determined and found to vary by 0.15 % and 6.5 %, respectively. Flow synthesis is found to be an excellent alternative to chemical methods to produce stable gold nanoparticles of varying size in an efficiently way. The particles obtained also perform very well when used as a substrate in surface enhanced Raman scattering as shown by the characterization of carboxylated single walled carbon nanotubes.
Figure
Bare gold nanoparticles have been synthesized in a single-phase stainless steel continuous flow tubular reactor using tetrachloroauric acid as a precursor  相似文献   

4.
We describe a new method for the visualization of the activity of red-ox proteins on a gold interface. Glucose oxidase was selected as a model system. Surfaces were modified by adhesion of glucose oxidase on (a) electrochemically cleaned gold; (b) gold films modified with gold nanoparticles, (c) a gold surface modified with self-assembled monolayer, and (d) covalent immobilization of protein on the gold surface modified with a self-assembled monolayer. The simple optical method for the visualization of enzyme on the surfaces is based on the enzymatic formation of polypyrrole. The activity of the enzyme was quantified via enzymatic formation of polypyrrole, which was detected and investigated by quartz microbalance and amperometric techniques. The experimental data suggest that the enzymatic formation of the polymer may serve as a method to indicate the adhesion of active redox enzyme on such surfaces.
Figure
An optical method for the evaluation of activity and distribution of glucose oxidase on the different surfaces was described. The enzymatic synthesis of polypyrrole (black colour) was successfully applied for the visualization of active enzyme on the surfaces.  相似文献   

5.
We examine how postsynthesis nanoparticle ligand shell modifications as a general approach can help in the understanding of currently proposed mechanisms for gold nanoparticle chirality. We compare the CD response of chirally decorated mixed-monolayer-protected gold nanoparticles synthesized in situ with quasi-identical gold nanoparticles either prepared by place exchange reactions or subjected to an aqueous base, resulting in partial hydrolysis and simultaneous partial racemization. We find that the CD response at wavelengths where the free chiral ligand does not absorb strongly depends on the preparation conditions, i.e., in situ synthesis vs place exchange, and that postsynthesis racemization of the chiral ligand produces racemic nanoparticles with no CD response, i.e., no induction of a chiral bias during reductive nanoparticle formation. Considering all experimental results for the described gold nanoparticle system with a C12H24 spacer between the nanoparticle surface and chiral center, the so-called "vicinal effect" with the formation of a supramolecular assembly of the chiral moieties seems to be active. Finally, we argue that postsynthesis nanoparticle ligand shell modifications such as racemization and/or place exchange reactions are very powerful tools to unravel contributions of the different gold nanoparticle chirality mechanisms.  相似文献   

6.
Open-tubular columns for capillary electrochromatography (CEC) were formed by immobilising dodecanethiol gold nanoparticles on prederivatised 3-aminopropyl-trimethoxysilane (APTMS) or 3-mercaptopropyl-trimethoxysilane (MPTMS) fused-silica capillaries. The initial stage of this research involved the synthesis and characterisation of dodecanethiol gold nanoparticles, with tunnelling electron microscopy analysis of the dispersed phase of the gold nanoparticles dispersion in CHCl3, revealing spherical particles. The surface features of an Au-MPTMS coated capillary column were determined using scanning electron microscopy. The electroosmotic flow characteristics of Au-APTMS and Au-MPTMS capillary columns were then determined, by varying the pH and the voltage. The electrochromatographic properties of the gold nanoparticles CEC capillaries were investigated using a "reversed-phase" test mixture of thiourea, benzophenone and biphenyl and selected pyrethroid pesticides. Efficient separations of benzophenone and biphenyl solutes on Au-MPTMS and Au-APTMS capillary columns were obtained, as were linear plots of logarithm capacity factor versus % MeOH. A study of the reproducibility of retention for these solutes on Au-APTMS, Au-MPTMS and on a loosely coated capillary demonstrated the necessity of a coupling agent to prevent the gold nanoparticles from washing-off. These dodecanethiol gold capillary columns are easier to produce and operate than packed capillary columns. The research work confirms the use of gold nanoparticles as a novel phase for open-tubular CEC, demonstrating reproducible retention and characteristic reversed-phase behaviour.  相似文献   

7.
A single-step synthesis of gold nanoparticles with an average diameter of approximately 10 nm from hydrogen tetrachloroaureate(III) hydrate (HAuCl4.3H2O) has been achieved in air-saturated aqueous solutions that contain poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers but not any other reducing agent. These amphiphilic block copolymers act as both reductants and colloidal stabilizers and prove very efficient in both functions. The formation of gold nanoparticles is controlled by the overall molecular weight and relative block length of the block copolymer. The synthesis procedure reported here is environmentally benign and economic, as it involves the minimum possible number of components: it uses water as the solvent, it uses commercially available polymers, it proceeds fast to completion, and it results in a "ready-to-use" product.  相似文献   

8.
The development of efficient cell-free systems of nanoparticle synthesis using microbial enzymes is a growing field of biological and green chemistry for the supportable improvement in nano-biotechnology. In the present study, we established a cell-free system for producing gold nanoparticles (AuNPs) using a fungal oxidoreductase named sulfite oxidoreductase purified to homogeneity from Fusarium oxysporum. The enzyme was purified by ultrafiltration followed by anion exchange chromatography on DEAE Sephadex A-50 gel, and its molecular weight was determined by gel filtration chromatography on Sephacryl S-300 gel. The purified enzyme had a molecular weight of 346 kDa. It was composed of three subunits of 176, 94 and 76 kDa. Purified enzyme was successfully used for production of gold nanoparticles in a cell-free system. Synthesized gold nanoparticles showed the highest absorbance at 520 nm wavelength as shown by UV–visible spectroscopy. They were spherical in shape with an average size of 20 nm as determined by scanning and transmission electron microscopy and dynamic light scattering. Assessment of the antifungal properties of synthesized nanoparticles by disk diffusion method indicated a potent growth inhibitory activity against all tested human pathogenic yeasts and molds by inhibition zones ranged from 10 to 18 mm. Taken together, our enzymatically established method of nanoparticle synthesis using a purified sulfite oxidoreductase of F. oxysporum can be considered as an efficient tool for generating harmless bioactive gold nanoparticles with potential applications in biology, medicine and industry.  相似文献   

9.
The nature of the self-assembled core-shell interface in gold@silica nanoparticles synthesized via a 3-aminopropyltrimethoxysilane (APTMS) route is investigated using materials synthesis as a sensitive tool for elucidating interfacial composition and organization. Our approach involves condensation of the gold@silica nanoparticles within a silica framework for synthesis of a composite gold-silica material containing approximately 30 wt % gold. This material contains one of the highest gold loadings reported, but maintains gold core isolation as ascertained via a single surface plasmon resonance absorption band frequency corresponding to that of gold nanoparticles in dilute aqueous solution. The immobilized gold cores are subsequently etched using cyanide anion for the synthesis of templated porosity, which corresponds to the space that was occupied by the gold. Characterization of immobilized amines is performed using probe molecule binding experiments, which demonstrate a lack of accessible amines after gold removal. Solid-state 13C CPMAS NMR spectroscopy on these materials demonstrates that the amount of amine immobilization must be less than 10% of the expected yield, assuming that all of the APTMS becomes bound to the gold nanoparticle template. These results require a core-shell interface in the gold@silica nanoparticles that is predominantly occupied by inorganic silicate species, such as Si-O-Si and Si-OH, rather than primary amines. Such a result is likely a consequence of the weak interaction between primary amines and gold in aqueous solution. Our method for investigating the core-shell interface of gold@silica nanoparticles is generalizable for other interfacial structures and enables the synthesis of bulk imprinted silica using colloidal templates.  相似文献   

10.
以紫脲酸铵(Murexide,MU)为还原剂及保护剂,采用水热合成法,合成了紫脲酸铵保护的荧光金纳米簇(MU-Au NCs),合成方法简单、快速.基于精胺对MU-Au NCs的荧光猝灭现象,建立了快速、超灵敏检测精胺的"Turn off"型荧光分析方法,在优化的条件下,本方法检测精胺的线性范围为0.003~300 μmol/L,检测限为1 nmol/L(S/N=3).本方法为构建精胺生物传感器及实际样品检测提供了理论基础和参考.  相似文献   

11.
[reaction: see text] The synthesis of a molecular wire bearing an anthraquinone core and thioacetyl end groups for gold electrode binding is described. A model anthraquinone system, substituted with tert-butylthio groups, can be reversibly switched electrochemically from cross conjugated (low conductance "off") to linear conjugated (high conductance "on") via two-electron reduction/oxidation reactions. This feature holds promise for the anthraquinone-based wires to be used as redox-controlled switches in molecular electronic devices.  相似文献   

12.
Here, we described a “one-pot” synthesis of smart hybrid materials based on elastin-like recombinamers (ELRs) and gold nanoparticles. Outstandingly, the reduction of auric acid in the presence of ELR Glu15 gave biohybrid Au-Glu15. TEM analysis carried out for Au-Glu15 exhibited nano-sized gold crystals with diameter ranging from 2 to 11 nm. Furthermore, Au-Glu15 promoted the formation of linear arrangements of gold clusters in areas of low particle density. Remarkable was that analogous architectures were obtained in a control experiment carried out with Glu15 and gold nanoparticles synthesized via a citrate reduction route. Therefore, Glu15 promoted the formation of 2D linear arrangements of gold clusters that exhibited interparticle distances in the range from 10 to 40 nm. Notable were the branched nanostructures exhibited by Au-Glu15B obtained for reduced gold-ELR mixtures that exhibited a lower gold ratio. On the other hand, Au-Glu15 exhibited spectroscopic properties (UV-vis absorption) that could be modulated as function of pH and temperature of the environment as result of reversible aggregation-expansion of gold nanoparticles. Thereby, Au-Glu15 displayed remarkable features suitable for the development of stimuli responsive optical sensors and detectors for biological applications that could operate in aqueous media and under a wide range of pH’s.  相似文献   

13.
A colloidal solution of gold nanoparticles is synthesized with the use of sodium tetrachloroaurate(III) as a precursor, oleylamine as a reducer and surfactant, and 1-octadecene as a solvent. Reaction stages are analyzed in situ by optical (UV-vis) absorption spectroscopy with a simultaneous analysis of particle sizes by dynamic light scattering and X-ray absorption near edge spectroscopy for the analysis of the gold oxidation state. After the synthesis the size of obtained nanoparticles is determined by transmission electron microscopy. The analysis of the obtained experimental data reveals the presence of three main steps in the reduction reaction mechanism, corresponding to Au3+, Au+, Au0, which enables the construction of the reaction model. The reaction mechanism involves the formation of gold(I) complexes with oleylamine, followed by polymerization and the formation of gold nanoclusters coated with oleylamine.  相似文献   

14.
The recent booming of gold catalysis has demonstrated that unprecedented transformations can be realized in a highly selective manner. Moreover, due to the growing availability of chiral organic ligands, gold-catalysis can be considered as one of most dynamic hot spots in asymmetric synthesis. However, in this context, the use of non-activated olefinic C-C double bonds is still largely unexplored due to the intrinsic inertness of CC (respect to allenes and alkynes) in taking part in nucleophilic additions assisted by π-electrophilic activations. Allylic alcohols have been demonstrated to be feasible “surrogates” of non-activated alkenes for the enantioselective allylic alkylation of indoles catalyzed by chiral gold(I) complexes. In this investigation, a full account addressing efficiency and substrate scope of such a process is presented.  相似文献   

15.
Cationic gold nanoparticles offer intriguing opportunities as drug carriers and building blocks for self‐assembled systems. Despite major progress on gold nanoparticle research in general, the synthesis of cationic gold particles larger than 5 nm remains a major challenge, although these species would give a significantly larger plasmonic response compared to smaller cationic gold nanoparticles. Herein we present the first reported synthesis of cationic gold nanoparticles with tunable sizes between 8–20 nm, prepared by a rapid two‐step phase‐transfer protocol starting from simple citrate‐capped particles. These cationic particles form ordered self‐assembled structures with negatively charged biological components through electrostatic interactions.  相似文献   

16.
This study presents the novel concept of a transformable protecting group, which changes its properties through structural transformation. Based on this concept, we developed a 2-(2-ethynylphenyl)-2-(5-methylfuran-2-yl)-ethoxycarbonyl (Epoc) group. The Epoc group was transformed into an Fmoc-like structure with gold(iii)-catalyzed fluorene formation and was removable under Fmoc-like mild basic conditions post-transformation even though it was originally stable under strongly basic conditions. As an application for organic synthesis, the Epoc group provides the novel orthogonality of gold(iii)-labile protecting groups in solid-phase peptide synthesis. In addition, the high turnover number of fluorene formation in aqueous media is suggestive of the applicability of the Epoc group to biological systems.

A protecting group removable with gold(iii)-catalyzed fluorene formation and the subsequent addition of piperidine was developed.  相似文献   

17.
We have discovered that metallic gold is a highly effective vehicle for the low-temperature vapor-phase carbonylation of methanol by insertion of CO into the O-H bond to form methoxycarbonyl. This reaction contrasts sharply to the carbonylation pathway well known for homogeneously catalyzed carbonylation reactions, such as the synthesis of acetic acid. The methoxycarbonyl intermediate can be further employed in a variety of methoxycarbonylation reactions, without the use or production of toxic chemicals. More generally we observe facile, selective methoxycarbonylation of alkyl and aryl alcohols and secondary amines on metallic gold well below room temperature. A specific example is the synthesis of dimethyl carbonate, which has extensive use in organic synthesis. This work establishes a unique framework for using oxygen-activated metallic gold as a catalyst for energy-efficient, environmentally benign production of key synthetic chemical agents.  相似文献   

18.
We report here on the formation of hybrid compound block copolymer micelles encapsulating gold nanoparticles, utilizing a direct and general preparation method. The giant hybrid compound micelles are structured with micelles of PS‐b‐P2VP with gold nanoparticles in their P2VP core and PI‐b‐PS chains as the outer part of the compound micelles. The gold nanoparticles were produced using gold ion‐loaded PS‐b‐P2VP micelles as a nanoreactor, in a PS selective solvent (toluene), by the subsequent reduction of gold ions. The synthesis of the gold nanoparticles was monitored by UV‐vis spectroscopy. The gold containing micelles were then encapsulated in larger micelles of PI‐b‐PS copolymer, by successive utilization of toluene and heptane with the intermediate evaporation of toluene. The nanoassembly of the compound materials comprised a PI corona and a PS compound core, with P2VP/Au0 domains, and was characterized using UV‐vis spectroscopy, dynamic light scattering and transmission electron microscopy.

  相似文献   


19.
Rapid synthesis of gold nanorods of controlled dimensions is one of the desired aspects of nanotechnology as a result of the potential of these nanomaterials for biomedical applications. The synthesis of gold nanorods has been achieved using a photoinitiator as an instant source of ketyl radicals, which allows the synthesis of gold nanorods in minutes. This is the first report providing a one-step synthesis of nanorods of controlled dimensions in 20-30 min using photoinitiator I-2959 as a source of ketyl radicals. Furthermore, the role of UV intensity, the concentration of silver ions, and the presence of cosolvents and a cosurfactant have been studied in detail in an effort to produce nanorods with controlled dimensions in higher yields. The role of acetone in nanorod synthesis has been explored in detail, and it has been demonstrated that, for the photochemical synthesis of nanorods using a photoinitiator, acetone is not a critical component and can be replaced by other water-miscible solvents, thus the successful synthesis of nanorods in tetrahydrofuran (THF) has been demonstrated. It has also been found that a cosurfactant and an organic solvent are not required for the synthesis of nanorods; however, their presence is found to improve the monodispersity of nanorod samples, in addition to providing a higher yield.  相似文献   

20.
This study deals with the synthesis and physicochemical investigation of gold nanoparticles using an aqueous extract of Monotheca buxifolia (Flac.). On the treatment of aqueous solution of tetrachloroauric acid with the plant extract, gold nanoparticles were rapidly fabricated. The synthesized particles were characterized by UV–Vis spectrophotometry (UV), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX) and Scanning electron microscopy (SEM). The formation of AuNPs was confirmed by noting the change in color through visual observations as well as via UV–Vis spectroscopy. UV?Vis spectrum of the aqueous medium containing gold nanoparticles showed an absorption peak at around 540 nm. FTIR was used to identify the chemical composition of gold nanoparticles and Au-capped plant extract. The presence of elemental gold was also confirmed through EDX analysis. SEM analysis of the gold nanoparticles showed that they have a uniform spherical shape with an average size in the range of 70–78 nm. This green system showed to be better capping and stabilizing agent for the fine particles. Further, the antioxidant activity of Monotheca buxifolia (Flac.) extract and Au-capped with the plant extract was also evaluated using FeCl3/K3[Fe(CN)]6 in vitro assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号