首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Here, we predict that the ferromagnetically coupled cobalt-benzene-cobalt system will act as the smallest molecular spin filter with unprecedented spin injection coefficient. To validate our in-silico observation, we have performed state-of-the-art nonequilibrium Green's function calculations and analyzed the density of states of cobalt at the relativistic and nonrelativistic level of theory. Remarkably, we found that unpaired 3d electrons of cobalt are not participating in the spin transport process like other transition metal containing multidecker complexes. Instead, an admixture of the outer-sphere 4s and 4p orbitals of cobalt along with the 2p orbital of carbon of the benzene moiety is contributing to the singly occupied highest molecular orbital in the majority spin channel that creates a path for coherent spin transport leading to the extremely high spin injection coefficient of the system. The absence of the 3d electrons of cobalt in the spin transport process has been carefully examined, and it was found that the nodal structure of the 3d orbital of cobalt is not at all suitable for bonding in the cobalt-benzene-cobalt system. The whole study indicates that the underlying mechanism of the spin filter action in cobalt-benzene-cobalt is completely distinctive from the other known materials.  相似文献   

2.
A novel approach was developed to calculate temperature-dependent Seebeck coefficient of heavily doped systems. The electronic density of states (DOS) and Fermi energy were determined and then, using these two parameters, the Seebeck coefficient was calculated by using Boltzmann transport theory. This approach is applied to heavily La-doped SrTiO3. The calculated Seebeck coefficient agrees well with the experimental data. By analyzing the results, it was shown that Seebeck coefficient is greatly affected by the asymmetry of DOS with respect to Fermi energy.  相似文献   

3.
The possibility to change the Seebeck coefficient sign has been evidenced in the LaCoO3 perovskites. A small hole doping (Co3+/Co4+) will result in a large positive Seebeck coefficient, while a small electron doping (Co2+/Co3+) will give a large negative Seebeck coefficient at room temperature. This mechanism is shown to be efficient as well in 1D Ca3Co2O6 deriving from hexagonal perovskites. By doping Ca3Co2O6 with Ti4+, a mixed valency Co2+/Co3+ is introduced and the thermopower turns negative.

At high temperature, the Seebeck coefficients of LaCoO3 and related compounds decrease to small values due to the spin state transition. The values converge towards a positive value, close to +20 μV/K at 800 K. This suggests that at high T, the Seebeck coefficients in the case of localized charges do not depend on the doping, but only on the spin and orbital degeneracies. On the other hand, in the case of metallic-like samples as electron-doped manganites, the properties can be described up to high T in terms of a single-band metal. Due to the linear variation of S as a function of T and the almost constant value of ρ, the ratio S2/ρ which is crucial for high temperature applications increases.  相似文献   


4.
We studied the spin state dependence of the electrical conductivity of the spin crossover compound [Fe(Htrz)(2)(trz)](BF(4)) (Htrz = 1H-1,2,4-triazole) by means of dc electrical measurements. The low spin state is characterized by higher conductance and lower thermal activation energy of the conductivity, when compared to the high spin state.  相似文献   

5.
We derive a mean-field expression for the effective diffusion coefficient of a probe molecule in a two-phase medium consisting of a hydrogel with large gel-free solvent inclusions, in terms of the homogeneous diffusion coefficients in the gel and in the solvent. Upon comparing with exact numerical lattice calculations, we find that our expression provides a remarkably accurate prediction for the effective diffusion coefficient, over a wide range of gel concentration and relative volume fraction of the two phases. Moreover, we extend our model to handle spatial variations of viscosity, thereby allowing us to treat cases where the solvent viscosity itself is inhomogeneous. This work provides robust grounds for the modeling and design of multiphase systems for specific applications, e.g., hydrogels as novel food agents or efficient drug-delivery platforms.  相似文献   

6.
7.
A novel molecular spin ladder structure of a nickel dithiolate complex has been constructed using a supramolecular cation composed of anilinium and 18-crown-6.  相似文献   

8.
The reaction H2O+(2B)+NO2(2A) → H2O(1A) + NO2+(1Σ) occurs at near the collision rate constant 1.2 × 10?9 cm3 s?1, in spite of the fact that the reactants produce both a singlet and a triplet state and the products correlate only with the singlet state. This would be expected to yield a statistical weight factor of 14 to be multiplied by the collision rate constant to obtain the maximum charge-tranfer rate constant. The triplet products of the charge transfer are clearly endothermic. The singlet—triplet intersection has not been identified but the available information about the singlet and triplet states of the intermediate protonated nitric acid molecule is discussed. Four other examples of apparent “spin violation” charge-transfer reactions have been noted H2O+ + NO, N2O+ + NO.CO+ + NO and CH4+ + O2.  相似文献   

9.
10.
We present ab initio molecular and solid-state calculations at the level of density functional theory (DFT) for the ethyl-substituted spiro-biphenalenyl neutral radical organic conductor. We find that the phase transition of this material is accompanied by a spin crossover (low-spin, LS, to high-spin, HS), and consequently a different band becomes the conduction band. The energy gap (Eg) increases from 0.12 eV of the low-temperature polymorph to 0.23 eV of the high-temperature polymorph corresponding to a different occupancy causing a change in the number of the available charge carriers, explaining the change of conductivity by 2 orders of magnitude at the phase transition. These gap values are also consistent with structural, IR, electrical conductivity, and magnetic susceptibility data of Itkis et al. The proximity of the monomers in the stacking dimers is closely related to the spin crossover in this material.  相似文献   

11.
[Fe(hyptrz)3](4-chloro-3-nitrophenylsulfonate)22 H2O (1; hyptrz=4-(3-hydroxypropyl)-1,2,4-triazole) has been synthesized and its physical properties have been investigated by several physical techniques including magnetic susceptibility measurements, calorimetry, and M?ssbauer, optical, and EXAFS spectroscopy. Compound 1 exhibits a spin transition below room temperature, together with a very wide thermal hysteresis of about 50 K. This represents the widest hysteresis loop ever observed for an FeII-1,2,4-triazole spin transition material. The cooperativity is discussed on the basis of temperature-dependent EXAFS studies and of the structural features of a CuII analogue. The EXAFS structural model of (1) in both spin states is compared to that obtained for a related material whose spin transition occurs above room temperature. EXAFS spectroscopy suggests that 1,2,4-triazole chain compounds retain a linear character whatever the spin state of the iron(II).  相似文献   

12.
IntroductionHighspinmoleculeshaveattractedmuchinterest,becausetheycanbeservedasthebuildingblockformagneticmaterials[1-2].ItissuggestedbyFukutome[3]andDoughertyetal.[4]thatthehighspinmoleculescanbedividedintotwocomponents:thespin-containing(SC)fragmen…  相似文献   

13.
The two-frequency pulse response of a multilevel system in NQR is investigated. Additional spin echo signals are shown to appear. The application of the two-frequency spin echo method to some of the crystals is demonstrated. The method is of great value for the investigation of local fields in crystals.  相似文献   

14.
Ground- and excited-state magnetic properties of recently characterized pi-conjugated photomagnetic organic molecules are analyzed by the means of density functional theory (DFT). The systems under investigation are made up of an anthracene (An) unit primarily acting as a photosensitizer (P), one or two iminonitroxyl (IN) or oxoverdazyl (OV) stable organic radical(s) as the dangling spin carrier(s) (SC), and intervening phenylene connector(s) (B). The magnetic behavior of these multicomponent systems, represented here by the Heisenberg-Dirac magnetic exchange coupling (J), as well as the EPR observables (g tensors and isotropic A values), are accurately modeled and rationalized by using our DFT approach. As the capability to quantitatively assess intramolecular exchange coupling J in the excited state makes it possible to undertake rational optimization of photomagnetic systems, DFT was subsequently used to model new compounds exhibiting different connection schemes for their functional components (P, B, SC). We show in the present work that it is worthwhile considering the triplet state of anthracene, that is, P when promoted in its lowest photoexcited state, as a full magnetic site in the same capacity as the remote SCs. This framework allows us to accurately account for the interplay between transient ((3)An) and persistent (IN, OV) spin carriers, which magnetically couple according to a sole polarization mechanism essentially supported by phenyl connector(s). From our theoretical investigations of photoinduced spin alignment, some general rules are proposed and validated. Relying on the analysis of spin-density maps, they allow us to predict the magnetic behavior of purely organic magnets in both the ground and the excited states. Finally, the notion of photomagnetic molecular devices (PMMDs) is derived and potential application towards molecular spintronics disclosed.  相似文献   

15.
16.
Compromise between the electrical conductivity and Seebeck coefficient limits the efficiency of chemical doping in the thermoelectric research. An alternative strategy, involving the control of a local crystal structure, is demonstrated to improve the thermoelectric performance in the RE(2)SbO(2) system. The RE(2)SbO(2) phases, adopting a disordered anti-ThCr(2)Si(2)-type structure (I4/mmm), were prepared for RE = La, Nd, Sm, Gd, Ho, and Er. By traversing the rare earth series, the lattice parameters of the RE(2)SbO(2) phases are gradually reduced, thus increasing chemical pressure on the Sb environment. As the Sb displacements are perturbed, different charge carrier activation mechanisms dominate the transport properties of these compounds. As a result, the electrical conductivity and Seebeck coefficient are improved simultaneously, while the number of charge carriers in the series remains constant.  相似文献   

17.
The nitroxide spin label 1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl-methanethiosulfonate (MTSSL), commonly used in site-directed spin labeling of proteins, is studied with molecular dynamics (MD) simulations. After developing force field parameters for the nitroxide moiety and the spin label linker, we simulate MTSSL attached to a polyalanine alpha-helix in explicit solvent to elucidate the factors affecting its conformational dynamics. Electron spin resonance spectra at 9 and 250 GHz are simulated in the time domain using the MD trajectories and including global rotational diffusion appropriate for the tumbling of T4 Lysozyme in solution. Analysis of the MD simulations reveals the presence of significant hydrophobic interactions of the spin label with the alanine side chains.  相似文献   

18.
Model lipid membranes made from binary mixtures of dimyristoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DMPC/DPPC) and dimyristoylphosphatidylcholine/cholesterol (DMPC/Chol) exhibit coexistence of diverse lipid phases at appropriate temperature and composition. Since lipids in different phases show different structural and motional properties, it is expected that the corresponding spin probe electron paramagnetic resonance (EPR) spectra will be superposition of several spectral components. From comparison of proportions of spectral components of the EPR spectrum with the fractions of the corresponding lipid phases obtained from known phase diagrams the partition coefficient of spin probe methyl ester of 5-doxyl palmitate between different lipid phases was determined. The results indicate that the used spin probe partitions approximately equally between different phases.  相似文献   

19.
Spin coherence experiments are used to determine the energy level structure, physical geometry, and exciton dynamics of a series of impurity-induced traps in 1,2,4,5-tetrachlorobenzene. The trap, a pertubed host molecule, is shown to be caused by an adjacent, translationally equivalent chemical impurity whose triplet energy may lie above or below the host exciton, but above the trap. The slow rates of thermal processes within the trap are interpreted as weak coupling between the lattice phonons and localized phonons induced at the trap by the impurity.  相似文献   

20.
Functional molecular wires are essential for the development of molecular electronics. Charge transport through molecules occurs primarily by means of two mechanisms, coherent superexchange and incoherent charge hopping. Rates of charge transport through molecules in which superexchange dominates decrease approximately exponentially with distance, which precludes using these molecules as effective molecular wires. In contrast, charge transport rates through molecules in which incoherent charge hopping prevails should display nearly distance independent, wirelike behavior. We are now able to determine how each mechanism contributes to the overall charge transport characteristics of a donor-bridge-acceptor (D-B-A) system, where D = phenothiazine (PTZ), B = p-oligophenylene, and A = perylene-3,4:9,10-bis(dicarboximide) (PDI), by measuring the interaction between two unpaired spins within the system's charge separated state via magnetic field effects on the yield of radical pair and triplet recombination product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号