首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在过去的近十年中,各种新型原位表征技术和反应器设计被应用于多相催化过程和催化材料的合成研究中,并获得了许多新认识.特别是最近几年,利用原位、共振拉曼光谱技术对分子筛合成关键物种检测、杂原子分子筛催化活性位的研究取得了一系列进展.这些技术的应用使得从分子水平认识复杂的多孔材料成为可能:从合成初期碎片基元检测、碎片相互连接的关键化学键到预组装类微孔结构;从高度隔离过渡金属中心到配位化学键断裂生成活性中间物种,再到完成催化反应循环.这为设计特定功能和结构的催化材料及高选择性的活性中心奠定了坚实的基础.  相似文献   

2.
Ultraviolet resonance Raman spectra of bacteriorhodopsin have been obtained using 229 nm excitation from a hydrogen-shifted neodymium yttrium aluminum garnet (Nd: YAG) laser. High signal-to-noise spectra are observed exhibiting vibrational bands at 762, 877, 1011, 1175, 1356, 1552 and 1617 cm-1 which are assigned to scattering from tryptophan and tyrosine side chains. This demonstrates the feasibility of using UV resonance Raman spectroscopy to monitor aromatic amino acid structural changes during the bacteriorhodopsin photocycle.  相似文献   

3.
We report on the great advantages of using deep UV Raman system for in situ planetary applications. Among them are to be mentioned: (I) higher scattering efficiency compared to VIS-IR Raman excitation wavelengths, (II) electronic resonance effects which increase the intrinsically weak Raman signal thus improving the S/N ratio of the detected Raman signals and (III) spectral separation of Raman and fluorescence signals. All these advantages are making UV Raman a valuable technique for in situ planetary applications. Mineral as well as biological samples were analyzed using Raman deep UV excitation and the results are presented. For the mineral samples a comparison with excitation in the NIR-VIS spectral regions is made. The impact of fluorescence on Raman data acquisition at different laser excitation wavelengths is assessed. Making use of the resonance effects, spectra of microorganisms were recorded with a high S/N ratio, allowing afterwards a very precise identification and classification (to the strain level) of the measured samples.  相似文献   

4.
The wood resin in Scots pine (Pinus sylvestris) stemwood and branch wood were studied using UV resonance Raman (UVRR) spectroscopy. UVRR spectra of the sapwood and heartwood hexane extracts, solid wood samples and model compounds (six resin acids, three fatty acids, a fatty acid ester, sitosterol and sitosterol acetate) were collected using excitation wavelengths of 229, 244 and 257 nm. In addition, visible Raman spectra of the fatty and resin acids were recorded. Resin compositions of heartwood and sapwood hexane extracts were determined using gas chromatography. Raman signals of both conjugated and isolated double bonds of all the model compounds were resonance enhanced by UV excitation. The oleophilic structures showed strong bands in the region of 1660-1630 cm(-1). Distinct structures were enhanced depending on the excitation wavelength. The UVRR spectra of the hexane extracts showed characteristic bands for resin and fatty acids. It was possible to identify certain resin acids from the spectra. UV Raman spectra collected from the solid wood samples containing wood resin showed a band at approximately 1650 cm(-1) due to unsaturated resin components. The Raman signals from extractives in the resin rich branch wood sample gave even more strongly enhanced signals than the aromatic lignin.  相似文献   

5.
We record the accurate and reliable Raman spectra of benzoic acid (BA), p-nitrobenzoic acid (PNBA) and o-nitrobenzoic (ONBA) in aqueous solution with ultraviolet excitation. And we find that the ultraviolet (UV) Raman spectrum of aqueous BA solution has one-to-one correspondence to that of BA solid whereas the others are less resemble to the solid counterparts. We also report surface Raman spectroscopy of them in silver colloid without any enhancement in UV region and call it surface-unenhanced Raman spectroscopy (SUERS) while the surface-enhanced Raman scattering (SERS) effects are perfect in near infrared or visible regions. It demonstrates the SERS effects are strongly dependent on the excitation wavelength. On the basis of the experiments, we discuss the mechanism of SERS excited in different regions.  相似文献   

6.
The efficient conversion of the second and third harmonics of a Nd YAG laser to near UV radiation in the 395–500 nm range by stimulated Stokes (and anti-Stokes) Raman scattering (SRS) in a 1 m Raman oscillator containing compressed H2 or D2 is used as an excitation source for spontaneous resonance Raman spectroscopy (RRS). SRS excited RR spectra are shown for the anion radical of tetracyanoquinodimethane (TCNQ).  相似文献   

7.
The formation of a supramolecular complex between a tetrapeptide and an artificial receptor , is monitored at submillimolar concentrations in water by UV resonance Raman spectroscopy. Using 275 nm excitation, we selectively probe the carboxylate binding site (CBS) within the receptor, a moiety which is very efficient in binding the carboxy terminus of peptides in aqueous media. Complexation of the receptor with the tetrapeptide involves the formation of a H-bond enforced ion pair, resulting in significant changes in the corresponding UV resonance Raman spectra. Our qualitative interpretation is based on experimental reference and calculated Raman spectra on model systems. First preliminary calculations show that for a quantitative analysis, also the distinct contributions of multiple CBS conformers must be considered in addition to the H-bond induced changes upon complexation.  相似文献   

8.
Quinolones are important gyrase inhibitors. Even though they are used as active agents in many antibiotics, the detailed mechanism of action on a molecular level is so far not known. It is of greatest interest to shed light on this drug-target interaction to provide useful information in the fight against growing resistances and obtain new insights for the development of new powerful drugs. To reach this goal, on a first step it is essential to understand the structural characteristics of the drugs and the effects that are caused by the environment in detail. In this work we report on Raman spectroscopical investigations of a variety of gyrase inhibitors (nalidixic acid, oxolinic acid, cinoxacin, flumequine, norfloxacin, ciprofloxacin, lomefloxacin, ofloxacin, enoxacin, sarafloxacin and moxifloxacin) by means of micro-Raman spectroscopy excited with various excitation wavelengths, both in the off-resonance region (532, 633, 830 and 1064 nm) and in the resonance region (resonance Raman spectroscopy at 244, 257 and 275 nm). Furthermore DFT calculations were performed to assign the vibrational modes, as well as for an identification of intramolecular hydrogen bonding motifs. The effect of small changes in the drug environment was studied by adding successively small amounts of water until physiological low concentrations of the drugs in aqueous solution were obtained. At these low concentrations resonance Raman spectroscopy proved to be a useful and sensitive technique. Supplementary information was obtained from IR and UV/vis spectroscopy.  相似文献   

9.
We examined the deep UV 229 nm photochemistry of NaNO(3) in solution and in the solid state. In aqueous solution excitation within the deep UV NO(3)ˉ strong π → π* transition causes the photochemical reaction NO(3)ˉ → NO(2)ˉ + O·. We used UV resonance Raman spectroscopy to examine the photon dose dependence of the NO(2)ˉ band intensities and measure a photochemical quantum yield of 0.04 at pH 6.5. We also examined the response of solid NaNO(3) samples to 229 nm excitation and also observe formation of NO(2)ˉ. The quantum yield is much smaller at ~10(-8). The solid state NaNO(3) photochemistry phenomena appear complex by showing a significant dependence on the UV excitation flux and dose. At low flux/dose conditions NO(2)ˉ resonance Raman bands appear, accompanied by perturbed NO(3)ˉ bands, indicating stress in the NaNO(3) lattice. Higher flux/dose conditions show less lattice perturbation but SEM shows surface eruptions that alleviate the stress induced by the photochemistry. Higher flux/dose measurements cause cratering and destruction of the NaNO(3) surface as the surface layers are converted to NO(2)ˉ. Modest laser excitation UV beams excavate surface layers in the solid NaNO(3) samples. At the lowest incident fluxes a pressure buildup competes with effusion to reach a steady state giving rise to perturbed NO(3)ˉ bands. Increased fluxes result in pressures that cause the sample to erupt, relieving the pressure.  相似文献   

10.
Cytosine, a nucleobase found in both DNA and RNA, is known to form photoproducts upon UV irradiation, damaging the nucleic acids and leading to cancer and other diseases. To determine the molecular mechanism by which these photoproducts occur, we have measured the resonance Raman spectra of cytosine at wavelengths throughout its 267 nm absorption band. Self-consistent analysis of the resulting resonance Raman excitation profiles and absorption spectrum using a time-dependent wave packet formalism yields both the excited-state structural changes and electronic parameters. From this analysis, we have been able to determine that, at most, 31% of the reorganization energy upon excitation is directed along photochemically relevant modes.  相似文献   

11.
The resonance Raman spectra of dilute cytochrome c and oxyhemoglobin solutions obtained with high peak power (>1 MW) laser excitation at 532.0 nm and optical multichannel analysis (OMA) are presented. The frequencies and intensities of bands in resonance Raman spectra obtained under these conditions are directly comparable to spectra derived from 0.15 W peak power excitation using cw lasers. No anomalous spectral features are observed. These pulsed-laser/OMA spectra are used to comment on the applicability of such techniques for time-resolved resonance Raman spectroscopy of biopolymers.  相似文献   

12.
We record the potential-dependent Raman spectra of thymine adsorbed on the roughened Au electrode by ultraviolet (UV) excitation at 325 nm, and we find that the surface-enhanced Raman spectra of thymine changed intensely with the negative shift of the applied potential. When the vibrational mode changes, the resonance potential (potential of maximum intensity) varies accordingly, indicating that the thymine molecules were chemisorbed on the roughened Au surface. The charge transfer (CT) mechanism could probably explain the experiment results in the present work.  相似文献   

13.
We report the preparation of highly ordered mesoporous Fe-Al-SBA-15 with isolated extraframework Fe species under acidic conditions. The materials were characterized by means of UV resonance Raman spectroscopy, in conjunction with BET, XRD, TEM, UV-vis, H2-TPR, FT-IR, and 27Al MAS NMR spectroscopy. The addition of both Fe and Al to the synthesis gel of SBA-15 results in the formation of isolated extraframework Fe species located close to the framework Al ions and the Fe content an order of magnitude higher than that in Fe-SBA-15 synthesized without Al. The existence of anchored extraframework Fe species was confirmed by the presence of a strong absorption band at 270 nm, hydrogen reduction at relatively low temperature, and the presence of a resonance Raman band at 1140 cm(-1). The location of Fe in close proximity to framework Al nuclei is further supported by 27Al MAS NMR measurements. Two characteristic UV Raman bands at 510 cm(-1) and 1090 cm(-1) excited by 244-nm laser are assigned to Fe-O-Si symmetric and asymmetric stretching modes of isolated tetrahedral Fe ions in the silica framework for Fe-SBA-15. The resonance Raman band at 1140 cm(-1) excited by 325-nm laser is attributed to the asymmetric stretching mode of the isolated extraframework iron species in Fe-Al-SBA-15. The isolated Fe species close to framework Al species are stable in acidic HCl solution, whereas the majority of Fe species in Fe-SBA-15 can be easily removed.  相似文献   

14.
The structures of two types of guanidine–quinoline copper complexes have been investigated by single‐crystal X‐ray crystallography, K‐edge X‐ray absorption spectroscopy (XAS), resonance Raman and UV/Vis spectroscopy, cyclic voltammetry, and density functional theory (DFT). Independent of the oxidation state, the two structures, which are virtually identical for solids and complexes in solution, resemble each other strongly and are connected by a reversible electron transfer at 0.33 V. By resonant excitation of the two entatic copper complexes, the transition state of the electron transfer is accessible through vibrational modes, which are coupled to metal–ligand charge transfer (MLCT) and ligand–metal charge transfer (LMCT) states.  相似文献   

15.
The fluorescent dye 4-dimethylamino-1,8-naphthalimide was incorporated at the bay area of N,N'-bispyridyl perylene bisimide to afford a fourfold-functionalized perylene bisimide ligand. Through self-assembly directed by metal-ion coordination, a multichromophore supramolecular entity composed of sixteen dimethylaminonaphthalimide antennas and a perylene bisimide-walled square core was subsequently constructed from this linear ditopic ligand and 90 degrees metal corner [Pd(dppp)](OTf)2 (dppp=1,3-bis(diphenylphosphino)propane; OTf=trifluoromethanesulfonate) in good yield. The isolated metallosupramolecular square was characterized by elemental analysis and 1H, 13C, and 31P{1H} NMR and UV/Vis spectroscopy. Furthermore, by means of 1H NMR diffusion-ordered spectroscopy (DOSY) the dimension of this assembly was evaluated by employing a previously reported perylene bisimide ligand and its square assembly as references. The results obtained confirm the square framework of the current assembly. The optical properties of this multichromophore dye assembly were investigated by UV/Vis and steady-state and time-resolved fluorescence spectroscopy. It was revealed that light captured by dimethylaminonaphthalimide antennas could be efficiently transported to the perylene bisimide core by a fluorescence resonance mechanism (energy-transfer efficiency E=95%), and this resulted in almost exclusive detection of intense perylene bisimide emission, irrespective of the excitation wavelength applied. The present square scaffold containing aminonaphthalimide antenna dyes exhibits more than seven times higher fluorescence quantum yield (Phifl=0.37) than a previously reported pyrene-bearing perylene bisimide-walled square (Phifl=0.05). Thus, this multichromophore square assembly with aminonaphthalimide antenna dyes is an artificial model for the cyclic light-harvesting complexes in purple bacteria.  相似文献   

16.
Cu colloid was prepared by oxidation-reduction; it was relatively steady in fixed conditions, with size about 10-30 nm. The Raman spectrum of p-hydroxybenzoic acid (PHBA) in Cu colloid solution with the ultraviolet (UV) excitation at 325 nm, was obtained, even it is usually difficult to obtain Raman signals in Ag or Au in the UV region. It was found that the Raman signal intensities result from the resonance enhanced of surface plasmon resonance of Cu nanoparticles excited at 325 nm. The adsorption behavior of PHBA on the Cu nanoparticles was studied by combining with density functional theory (DFT); it was found that the calculated Raman frequencies were in good agreement with experimental value. So one can conclude that the simplified model is probably reasonable to describe some resonance Raman experiments.  相似文献   

17.
Time-resolved Fourier-transform Raman scattering with picosecond excitation is reported for the first time. The resonance Raman spectrum of 9,10-diphenylanthracene in its excited single state was obtained by Raman excitation at 1064 nm with 100 ps pulses, following photoexcitation at 355 nm. The implementation and characterization of time-resolved FT-Raman spectroscopy with a step-scan interferometer is discussed. FT-Raman spectra generated with continuous and mode-locked beams in the continuous-scan mode of the interferometer are compared with step-scan FT-Raman spectra generated with 2 kHz pulses.  相似文献   

18.
The decay dynamics of N,N-dimethylthioacetamide after excitation to the S3(ππ*) state was studied by using the resonance Raman spectroscopy and complete active space selfconsistent field method calculations. The UV-absorption and vibrational spectra were assigned. The A-band resonance Raman spectra were obtained in acetonitrile, methanol and water with the laser excitation wavelengths in resonance with the first intense absorption band to probe the Franck-Condon region structural dynamics. The CASSCF calculations were carried out to determine the excitation energies and optimized structures of the lowerlying singlet states and conical intersection point. The A-band structural dynamics and the corresponding decay mechanism were obtained by the analysis of the resonance Raman intensity pattern and the CASSCF calculated structural parameters. The major decay channel of 3,FC(ππ*)→S3(ππ*)/S1(nπ*)→1(nπ*) is proposed.  相似文献   

19.
Vanadia species on aluminas (delta- and gamma-Al2O3) with surface VOx density in the range 0.01-14.2 V/nm2 have been characterized by UV and visible Raman spectroscopy, UV-visible diffuse reflectance spectroscopy (UV-Vis DRS), and temperature-programmed reduction in hydrogen. It is shown that the alumina phase has little influence on the structure and reducibility of surface VOx species under either dehydrated or hydrated conditions. Three similar types of dispersed VOx species, i.e., monovanadates, polyvanadates, and V2O5, are identified on both aluminas under dehydrated conditions. Upon hydration, polymerized VOx species dominate on the surfaces of the two aluminas. The broad Raman band at around 910 cm(-1), observed on dehydrated V/delta-, gamma-Al2O3 at all V loadings (0.01-14.2 V/nm2), is assigned to the interface mode (V-O-Al) instead of the conventionally assigned V-O-V bond. The direct observation of the interface bond is of significance for the understanding of redox catalysis because this bond has been considered to be the key site in oxidation reactions catalyzed by supported vanadia. Two types of frequency shifts of the V=O stretching band (1013-1035 cm(-1)) have been observed in the Raman spectra of V/Al2O3: a shift as a function of surface VOx density and a shift as a function of excitation wavelength. The shift of the V=O band to higher wavenumbers with increasing surface VOx density is due to the change of VOx structure. The V=O stretching band in dispersed vanadia always appears at lower wavenumber in UV Raman spectra than in visible Raman spectra for the same V/Al2O3 sample. This shift is explained by selective resonance enhancement according to the UV-Vis DRS results. It implies that UV Raman has higher sensitivity to isolated and less polymerized VOx species while visible Raman is more sensitive to highly polymerized VOx species and crystalline V2O5. These results show that a multiwavelength excitation approach provides a more complete structural characterization of supported VOx catalysts.  相似文献   

20.
The potential-dependent surface-enhanced Raman spectrum of adsorbed p-nitrobenzoic acid (PNBA) on the roughened Au electrode has been obtained by using ultraviolet (UV) excitation at 325 nm. The surface-enhanced Raman spectra of PNBA intensely changed when the voltage was in the rang of negative value, and the electrode potential at which the resonance (potential of maximum intensity) occurs varied when the vibrational mode changes, indicating that the PNBA molecules were chemisorbed on the roughened Au surface. The charge transfer (CT) mechanism could probably explain the experiment results in the present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号