首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biwa S  Suzuki A  Ohno N 《Ultrasonics》2005,43(6):495-502
The phase velocity of the antisymmetric-mode interface wave as well as the longitudinal and shear wave reflection coefficients have been measured for contacting poly(methyl methacrylate) (PMMA) surfaces subjected to different contact pressures. It has been found that while the reflection coefficients decrease as the contact pressure is increased, the phase velocity of the interface wave increases from that of the Rayleigh wave toward that of the bulk shear wave. From these measurements, the normal and tangential interfacial stiffnesses of the contacting PMMA surfaces have been evaluated as functions of the contact pressure. As a result, the two independent procedures to evaluate the tangential stiffness, namely, from the interface wave velocity and from the shear wave reflection measurements, have yielded mutually consistent results. Furthermore, it has been found that the tangential/normal stiffness ratio and the shear/longitudinal reflection ratio of the contact interface are consistent with the predictions of an existing theoretical model for kissing bond interfaces.  相似文献   

2.
This paper concerns a study of the detectability of dry contact kissing bonds in adhesive joints using three ultrasonic inspection techniques. Conventional normal incidence longitudinal and shear wave inspection were conducted on dry contact kissing bonds using a standard damped ultrasonic transducer and an electro-magnetic acoustic transducer (EMAT) respectively. The detectability of the dry contact kissing bonds was assessed by calculating the reflection coefficient of the imperfect interface at varying loads for a number of surface roughnesses. A high power ultrasonic method was also employed to determine the non-linear behavior of the adhesive interface. The non-linearity of the interface was determined by the ratio of the amplitudes of the first harmonic and fundamental frequencies of the transmitted waveform. It was found that the high power technique showed the greatest sensitivity to these kissing bonds at low contact pressures, however at high loads conventional longitudinal wave testing was more sensitive. It was also noted that a combination of two or more techniques could provide enhanced information about the kissing bond compared to a single technique alone.  相似文献   

3.
Several possible sources of inaccuracy that occur in the classical interpretation of caustics patterns generated during transient crack growth in elastic materials are examined using a ‘Bifocal Caustics’ set-up and a new full field optical technique called ‘Coherent Gradient Sensing’. During unsteady dynamic crack growth, strict KdI-dominance is generally absent, especially at times close to crack initiation and arrest, even in regions outside the crack-tip 3-D zone where plane stress conditions persist. In such cases a truly transient higher order expansion is found to be essential for correctly describing stress fields outside the 3-D zone.  相似文献   

4.
Kawashima K  Omote R  Ito T  Fujita H  Shima T 《Ultrasonics》2002,40(1-8):611-615
The second harmonic of a Rayleigh wave passing through a minute surface crack has been numerically analyzed by semi-explicit FEM including special elements which account for a nonlinear stress-strain relation at crack surfaces. Minute cracks perpendicular to a free, flat surface close under compressive stress when width of the crack opening is less than the longitudinal amplitude of the Rayleigh wave. Thereafter, compressive and shear stresses are partially transmitted through the closed cracks, whereas tensile and shear stresses are not transmitted through cracks that remain open. This leads to marked nonlinear ultrasonic response. Calculation was performed for an aluminum block having a surface crack. The transverse component of the Rayleigh wave propagating through the cracks shows distorted waveforms, making the second harmonic amplitude clearly noticeable. In an experiment, the second harmonic component of the leaky Rayleigh wave was detected for a simple crack model consisting of two aluminum blocks, by use of a PVDF line-focused transducer. The results of the experiment show that the second harmonic amplitude is a second-order function of the fundamental wave amplitude, and is more pronounced for low compressive stress applied to close the crack surfaces.  相似文献   

5.
The analysis of adhesive bonds using electromagnetic acoustic transducers   总被引:1,自引:0,他引:1  
The paper presented here outlines a technique for examining aerospace adhesive bonds using electromagnetic acoustic transducers (EMAT). The main restriction on the use of bonded structures is the lack of a reliable, applicable non-destructive test. Simple acoustic theory shows that a shear wave at normal incidence to an interface should be a more sensitive probe of interfacing coupling than a longitudinal wave. Conventional piezoelectric shear transducers require a very viscous couplant which makes scanning problematic. The EMAT described here consists of a pancake coil, and a permanent magnet behind the coil provides a static magnetic field normal to the surface of the sample and the plane of the coil. The EMATs used have the advantage of generating broadband radially polarized shear waves, while requiring no acoustic couplant. They are also comparable in size to typical piezoelectric transducers. The broadband nature of the transducer gives it a high spatial resolution in the direction of wave propagation. Experiments performed on plate-like samples have successfully detected deliberately constructed defects, while monitoring the adhesive thickness. Defects have been identified using a C-scan technique using a single EMAT in send-receive mode from either side of the bond.  相似文献   

6.
Guided waves in an elastic plate surrounded by air propagate with very low attenuation. This paper describes the effect on this propagation of compressively loading an elastomer with high internal damping against one surface of the elastic plate. The propagation of both A0 and S0 Lamb modes is considered. The principal effect is shown to be increased attenuation of the guided waves. This attenuation is caused by leakage of energy from the plate into the elastomer, where it is dissipated due to high viscoelastic damping. It is shown that the increase in attenuation is strongly dependent on the compressive load applied across the solid-solid interface. This interface is represented as a spring layer in a continuum model of the system. Both normal and shear stiffnesses of the interface are quantified from the attenuation of A0 and S0 Lamb waves measured at each step of the compressive loading. The normal stiffness is also measured independently by normal incidence, bulk longitudinal wave ultrasound. The resulting predictions of wave propagation behavior, such as attenuation, obtained by the model are in excellent agreement with those measured experimentally.  相似文献   

7.
D. W. Wheeler 《哲学杂志》2013,93(36):5719-5740
For a diamond-coated component, the shear stresses at the coating–substrate interface, generated by solid particle impingement, are known to affect interfacial integrity. If these stresses are of sufficient magnitude, coating-debonding caused by interfacial crack propagation can be initiated, which can later lead to catastrophic failure of the coating. This paper describes a set of experiments conducted on CVD diamond coatings at a constant particle impingement velocity (250 m/s), using sieved silica sand varying in diameter from 125 to 500 µm. The objective of this work was to examine the influence of the stress field on the integrity of the coating by varying the depth at which the maximum shear stress occurred. Detailed studies of the coating failure time with respect to the normalized depth of maximum shear stress show that particle impacts generating a maximum shear stress at, or close to, the coating–substrate interface results in rapid debonding of the coating. Coatings thick enough to contain the maximum shear stress within the coating and away from the interface exhibit the longest life when subjected to solid particle impacts. The results are also compared to other erosion studies and the differences between them are explained.  相似文献   

8.
The image-processing system based on a two-dimensional Fourier transform is presented for the analysis of Young’s fringes pattern created from a double-exposure speckle photograph. The fringe spacing and orientation are determined using only one Young’s fringes pattern without any other diffraction halo patterns. The stress-intensity factors of a mixed-mode interface crack were measured by speckle photography. A compact normal and shear specimen with an interface crack was employed. This specimen enables us to carry out the experiment under various kinds of mixed-mode loading. A steel and an epoxy resin were used as dissimilar materials. The displacement along the crack lines at the free surface was measured by speckle photography. The K1 and K11 values were determined by a least squares method using displacement data along the crack lines. Three-dimensional finite element analysis was carried out on the same specimen. An accuracy of stress intensity factors obtained by the speckle photography was discussed by comparison of results obtained by the finite element analysis.Presented at 1996 International Workshop on Interferometry (IWI ‘96), August 27–29, Saitama, Japan.  相似文献   

9.
We present a numerical study of finite strain stress fields near the tip of an interface crack between a rigid substrate and an incompressible hyperelastic solid using the finite element method (FEM). The finite element (FE) simulations make use of a remeshing scheme to overcome mesh distortion. Analyses are carried out by assuming that the crack tip is either pinned, i.e., the elastic material is perfectly bonded (no slip) to the rigid substrate, or the crack lies on a frictionless interface. We focus on a material which hardens exponentially. To explore the effect of geometric constraint on the near tip stress fields, simulations are carried out under plane stress and plane strain conditions. For both the frictionless interface and the pinned crack under plane stress deformation, we found that the true stress field directly ahead of the crack tip is dominated by the normal opening stress and the crack face opens up smoothly. This is also true for an interface crack along a frictionless boundary in plane strain deformation. However, for a pinned interface crack under plane strain deformation, the true opening normal stress is found to be lower than the shear stress and the transverse normal stress. Also, the crack opening profile for a pinned crack under plane strain deformation is completely different from those seen in plane stress and in plane strain (frictionless interface). The crack face flips over and the tip angle is almost tangential to the interface. Our results suggest that interface friction can play a very important role in interfacial fracture of soft materials on hard substrates.  相似文献   

10.
Nanoindentation-induced interlayer bond switching and phase transformation in carbon nanotubes (CNTs) and graphite are simulated by molecular dynamics. Both graphite and CNTs experience a soft-to-hard phase transformation at room temperature at compressive stresses of 12 and 16 GPa, respectively. Further penetration leads to the formation of interlayer sp(3) bonds, which are reversible upon unloading if the compressive stress is under about 70 GPa, beyond which permanent interlayer sp(3) bonds form. During nanoindentation, the maximum nanohardness of graphite can reach 109 GPa, and CNTs 120 GPa, which is comparable to that of diamond.  相似文献   

11.
We investigate, through first-principles calculations, lattice instabilities induced in diamond by the application of high shear stresses. For shear stresses as low as 95 GPa a lattice instability will occur, leading to graphitelike layered structures. This effect is highly anisotropic. The reversal of the direction of the applied shear forces may cause a change of 80 GPa in the shear stress value at which the instability develops. The same reversal also causes different bonds to be broken, resulting in a drastic change in the orientation of the resulting graphitelike structures. We also find that an additional compressive stress of 50 GPa along the (111) direction does not eliminate the shear-induced instability.  相似文献   

12.
When viscoelastic bulk phases are sheared, the deformation of the sample induces not only shear stresses, but also normal stresses. This is a well known and well understood effect, that leads to phenomena such as rod climbing, when such phases are stirred with an overhead stirrer, or to die swell in extrusion. Viscoelastic interfaces share many commonalities with viscoelastic bulk phases, with respect to their response to deformations. There is however little experimental evidence that shear deformations of interfaces can induce in-plane normal stresses (not to be confused with stresses normal to the interface). Theoretical models for the stress-deformation behavior of complex fluid-fluid interfaces subjected to shear, predict the existence of in-plane normal stresses. In this paper we suggest methods to confirm the existence of such stresses experimentally.  相似文献   

13.
《Composite Interfaces》2013,20(2):91-106
This article describes a study of an analytic interfacial stresses solution of FRP bond tendon anchorage, under different boundary conditions. The analytic solution was obtained with the cohesive zone model (CZM): the concept of the minimum relative interface displacement s mis introduced and used as the fundamental variable to express all other parameters. The presented analytic solution agrees well with the result of experiment and that of finite element analysis (FEA). Furthermore, the interface shear stress distributions under two kinds of boundary conditions are discussed. It is indicated that the boundary conditions affected distribution of interfacial stress greatly. Under different boundary conditions, at the same load level, the peak interface shear stress corresponding to the first boundary condition is smaller than it is corresponding to the second boundary condition. The FRP tendon anchor under the first boundary condition can alleviate the peak bond stress, resulting in better uniformity in bond stress distribution.  相似文献   

14.
D.K. Yi  J. Zhuang  I. Sridhar 《哲学杂志》2013,93(26):3456-3472
Elastic–plastic stress analysis has been carried out for the plastic zone size and crack tip opening displacement of a sub-interface crack with small scale yielding. In our study, the shape of plastic zone is assumed as a long, slim strip at both crack tips. In the plastic zone, both normal stress and shear stress exist and are considered due to the bi-material interface. The values of the plastic zone size, normal stress and shear stress are determined by satisfying the conditions where both Modes I and II stress intensity factors vanish and Von Mises yield criterion is met. In the present paper, the sub-interface crack is simulated by continuously distributed dislocations which will result in singular integral equations. Those singular integral equations can be solved by reducing them to a set of linear equations. The values of the plastic zone size and crack tip opening displacement are obtained through an iterative procedure. Finally, the effect of normalized loading, normalized crack depth (distance to the interface) and Dundurs’ parameters on the normalized plastic zone size and the normalized crack tip opening displacement is discussed.  相似文献   

15.
 采用有限元方法对钼基体上不同厚度(20~1 000 μm)金刚石膜的热残余应力进行了全面的模拟与分析,得出了它们在膜内分布的等值线图,研究了金刚石膜厚度尺寸对整个膜内的最大主拉应力和界面处每个应力分量最大值的影响。结果表明:在整个膜内,最大主拉应力的位置出现在膜的表面、界面或侧面,其值随膜厚度的增加而增大;在界面处,最大轴向应力随膜厚度的增加而增大,而最大径向压应力、最大周向压应力和最大剪应力则随膜厚度的增加而减小,其中最大剪应力减幅较小;膜厚度越大时,以上各量随厚度增(减)的速度越慢。其结论对于在金刚石膜的制备中合理地选择厚度、有效地进行应力控制有一定的参考价值。  相似文献   

16.
A calculation method based on the shear lag approach was presented to get an approximate estimate of influences of residual stresses and frictional shear stress at the debonded interface on the interfacial debonding behavior at the notch-tip along fiber direction in two-dimensional unidirectional double-edge-notched composites. With this method, the energy release rate for initiation and growth of debonding as a function of composite stress were calculated for some examples. The calculation results showed in outline how much the tensile and compressive residual stresses in the matrix and fiber along fiber direction, respectively, act to hasten the initiation and growth of the debonding when the final cut element in the notch is matrix, while they act to retard them when the final cut element is fiber, and how much the frictional shear stress at the debonded interface reduces the growth rate of the debonding.  相似文献   

17.
《Composite Interfaces》2013,20(1):19-40
In this paper the micro-scratch test is simulated by ANSYS finite element code for thin hard coating on substrate composite material system. Coulomb friction between indenter and material surface is considered. The material elastic-plastic properties are taken into account. Contact elements are used to simulate the frictional contact between indenter and material surfaces, as well as the frictional contact after the detachment of coating/substrate interfaces has taken place. In the case of coating/substrate interfaces being perfectly bonded, the distributions of interfacial normal stress and shear stress are obtained for the material system subjected to normal and tangential loading. In the case of considering the detachment of interfaces, the length of interfacial detachment and the redistribution of stresses because of interfacial detachments are obtained. The influences of different frictional coefficients and different indenter moving distances on the distributions of stresses and displacements are studied. In the simulation, the interfacial adhesion shear strength is considered as a main adhesion parameter of coating/substrate interfaces. The critical normal loading from scratch tests are directly related to interfacial adhesion shear strengths. Using the critical normal loading known from experiments, the interfacial adhesion shear strength is obtained from the calculation. When the interfacial adhesion shear strength is known, the critical normal loading is obtained for different coating thicknesses. The numerical results are compared with the experimental values for composite materials of thin TiN coating on stainless steel substrate.  相似文献   

18.
The interaction of four parallel non-symmetric permeable cracks in a piezoelectric/piezomagnetic composite plane subjected to anti-plane shear stress loading was studied by the Schmidt method. The problem was formulated through a Fourier transform into four pairs of dual integral equations, in which unknown variables are jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. Finally, the relationships among the electric displacement, magnetic flux and stress fields near the crack tips were obtained. The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the lengths and spacing of cracks. It was also revealed that the crack shielding effect is present in piezoelectric/piezomagnetic composites.  相似文献   

19.
《Composite Interfaces》2013,20(2):165-176
Because of the importance of thermal residual stresses in composite materials, our study aims to compute them by the finite element method. Numerical analysis shows that these stresses need to be taken into account. The interface is affected by these stresses, particularly in the free edge. The discontinuity of the normal stresses along the interface and the shear value at the free edge influence the composite material behaviour during its use (e.g. the composite used as a patch for repairing a crack).  相似文献   

20.
The ability to achieve uniform stress in uniaxial compression tests of polycrystalline alumina is of significance for the calibration of piezospectroscopic coefficients as well as strength studies in ceramics. In this study high‐energy X‐rays were used to capture powder diffraction profiles over a half‐section of a polycrystalline alumina parallelepiped sample under an increasing uniaxial compressive load. The data were converted to strain and results were used for stress mapping of the sample. Stress maps from the study quantify the higher stresses at the sample–platen contact interface and reveal the evolution of the stress distribution in these specimens with load. For the geometry of the samples used, at the center section of the specimen the overall magnitudes of the compressive stresses were found to be 20% higher compared with the average expected theoretical stress based on the applied load and cross‐sectional area. The observed compressive stresses at the corners of the parallelepiped specimen were 62% higher and shear stresses were observed at the specimen interface to the load mechanism. The effects, seen at the interface, can lead to premature failure at these locations and can affect the accuracy of calibration of spectral peaks with stress as well as compression strength measurements. The results provide important information that can be used to establish guidelines on material and geometry considerations in developing compression tests on high‐strength ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号