首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
qVЕРхНИИ пРЕДЕл пОслЕД ОВАтЕльНОстИ МНОжЕс тВA n ОпРЕДЕльЕтсь сООтНО шЕНИЕМ \(\mathop {\lim sup}\limits_{n \to \infty } A_n = \mathop \cap \limits_{k = 1}^\infty \mathop \cup \limits_{n = k}^\infty A_n . B\) стАтьЕ РАссМАтРИВА Етсь слЕДУУЩИИ ВОпРО с: ЧтО МОжНО скАжАть О ВЕРхНИх пРЕДЕлАх \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) , еслИ ИжВЕстНО, ЧтО пРЕсЕЧЕНИь \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) «МАлы» Дль кАж-ДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) ? ДОкАжыВАЕтсь, Ч тО
  1. ЕслИ \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — кОНЕЧНОЕ МНО жЕстВО Дль кАжДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , тО НАИДЕтсь тАкАь пОДпО слЕДОВАтЕльНОсть, Дл ь кОтОРОИ МНОжЕстВО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) сЧЕтНО;
  2. ЕслИ \(2^{\aleph _0 } = \aleph _1\) , тО сУЩЕстВУЕ т тАкАь пОслЕДОВАтЕл ьНОсть (An), ЧтО \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — сЧЕтНОЕ МНОжЕстВО Дль лУБОИ п ОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , НО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) ИМЕЕт МОЩ-НОсть кОНтИНУУМА;
  3. ЕслИA n — БОРЕлЕ ВскИЕ МНОжЕстВА В НЕкОтОРО М пОлНОМ сЕпАРАБЕльНО М МЕтРИЧЕскОМ пРОстРАНстВЕ, И \(\mathop \cap \limits_{k = 1}^\infty A_{n_k }\) — сЧЕт НОЕ МНОжЕстВО Дль кАж ДОИ пОДпОслЕДОВАтЕльНОстИ \((A_{n_k } )\) , тО сУЩЕстВУЕт тАкАь п ОДпОслЕДОВАтЕльНОсть, ЧтО \(\mathop {\lim sup}\limits_{k \to \infty } A_{n_k }\) — сЧЕтНОЕ МНОжЕстВО. кРОМЕ тОгО, ДОкАжАНО, Ч тО В слУЧАьх А) И В) В пОслЕДОВАтЕльНОстИ (A n ) сУЩЕстВУЕт схОДьЩА ьсь пОДпОслЕДОВАтЕльНО сть.
кРОМЕ тОгО, ДОкАжАНО, Ч тО В слУЧАьх А) И В) В пОслЕДОВАтЕльНОстИ (А n ) сУЩЕстВУЕт схОДьЩ Аьсь пОДпОслЕДОВАтЕльНО сть.  相似文献   

2.
Let p={pv} be a fixed sequence of complex numbers. Define \(p_n : = \mathop \Sigma \limits_{\nu = o}^n p_\nu \) and suppose that \(p_{m_k } \ne o\) for a subsequence M={mk} of nonnegative integers. The matrix A=(αkv) with the elements $$\alpha _{k\nu } = p_\nu /p_{m_k } if o \leqslant \nu \leqslant m_k ,\alpha _{k\nu } = oif \nu > m_k $$ generates a summability method (R,p,M) which is a refinement of the well known Riesz methods. The (R,p,M) methods have been introduced in [4]. In the present paper we are concerned with the summability of the geometric series \(\mathop \Sigma \limits_{\nu = o}^n z^\nu \) by (R,p,M) methods. We prove the following theorem. Suppose G is a simply connected domain with \(\{ z:|z|< 1\} \subset G,1 \varepsilon | G \) . Then there exists a universal, regular (R,p,M) method having the following properties: (1) \(\mathop \Sigma \limits_{\nu = o}^\infty z^\nu \) is compactly summable (R,p,M) to \(\tfrac{1}{{1 - z}}\) on G. (2) For every compact set B?¯Gc which has a connected complement and for every function f which is continuous on B and analytic in its interior there exists a subsequence M(B,f) of M such that \(\mathop \Sigma \limits_{\nu = o}^\infty z^\nu \) is uniformly summable (R,p,M(B,f)) to f(z) on B. (3) For every open set U?Gc which has simply connected components in ? and for every function f which is analytic on U there exists a subsequence M(U,f) of M such that \(\mathop \Sigma \limits_{\nu = o}^\infty z^\nu \) is compactly summable (R,p,M(U,f)) to f(z) on U.  相似文献   

3.
Let \(\mathfrak{M}\) be the Medvedev lattice: this paper investigates some filters and ideals (most of them already introduced by Dyment, [4]) of \(\mathfrak{M}\) . If \(\mathfrak{G}\) is any of the filters or ideals considered, the questions concerning \(\mathfrak{G}\) which we try to answer are: (1) is \(\mathfrak{G}\) prime? What is the cardinality of \({\mathfrak{M} \mathord{\left/ {\vphantom {\mathfrak{M} \mathfrak{G}}} \right. \kern-0em} \mathfrak{G}}\) ? Occasionally, we point out some general facts on theT-degrees or the partial degrees, by which these questions can be answered.  相似文献   

4.
This note deals with the following question: How many planes of a linear space (P, $\mathfrak{L}$ ) must be known as projective planes to ensure that (P, $\mathfrak{L}$ ) is a projective space? The following answer is given: If for any subset M of a linear space (P, $\mathfrak{L}$ ) the restriction (M, $\mathfrak{L}$ )(M)) is locally complete, and if for every plane E of (M, $\mathfrak{L}$ (M)) the plane $\bar E$ generated by E is a projective plane, then (P, $\mathfrak{L}$ ) is a projective space (cf. 5.6). Or more generally: If for any subset M of P the restriction (M, $\mathfrak{L}$ (M)) is locally complete, and if for any two distinct coplanar lines G1, G2 ∈ $\mathfrak{L}$ (M) the lines $\bar G_1 ,\bar G_2 \varepsilon \mathfrak{L}$ generated by G1, G2 have a nonempty intersection and $\overline {G_1 \cup {\text{ }}G_2 }$ satisfies the exchange condition, then (P, $\mathfrak{L}$ ) is a generalized projective space.  相似文献   

5.
For anyx ∈ r put $$c(x) = \overline {\mathop {\lim }\limits_{t \to \infty } } \mathop {\min }\limits_{(p,q\mathop {) \in Z}\limits_{q \leqslant t} \times N} t\left| {qx - p} \right|.$$ . Let [x0; x1,..., xn, ...] be an expansion of x into a continued fraction and let \(M = \{ x \in J,\overline {\mathop {\lim }\limits_{n \to \infty } } x_n< \infty \}\) .ForxM put D(x)=c(x)/(1?c(x)). The structure of the set \(\mathfrak{D} = \{ D(x),x \in M\}\) is studied. It is shown that $$\mathfrak{D} \cap (3 + \sqrt 3 ,(5 + 3\sqrt 3 )/2) = \{ D(x^{(n,3} )\} _{n = 0}^\infty \nearrow (5 + 3\sqrt 3 )/2,$$ where \(x^{(n,3)} = [\overline {3;(1,2)_n ,1} ].\) This yields for \(\mu = \inf \{ z,\mathfrak{D} \supset (z, + \infty )\}\) (“origin of the ray”) the following lower bound: μ?(5+3√3)/2=5.0n>(5 + 3/3)/2=5.098.... Suppose a∈n. Put \(M(a) = \{ x \in M,\overline {\mathop {\lim }\limits_{n \to \infty } } x_n = a\}\) , \(\mathfrak{D}(a) = \{ D(x),x \in M(a)\}\) . The smallest limit point of \(\mathfrak{D}(a)(a \geqslant 2)\) is found. The structure of (a) is studied completely up to the smallest limit point and elucidated to the right of it.  相似文献   

6.
In this paper we study the Fourier transform of unbounded measures on a locally compact groupG. After a short introductory section containing background material, especially results established byL. Argabright andJ. Gil De Lamadrid we turn to the main subjects of the paper: first we characterize \(\Re \left( G \right), \mathfrak{J}\left( G \right)\) andB(G) cones in \(\mathfrak{W}\left( G \right)\) . After that we establish the subspace \(\mathfrak{W}_\Delta \left( G \right)\) of \(\mathfrak{W}\left( G \right)\) which contains \(\mathfrak{W}_p \left( G \right)\) , the linear span of all positive definite measures.  相似文献   

7.
Рассматриваются слу чайная величина \(\mathfrak{X} = (X_n (\omega ))\) , удовлетворяющая усл овиюE(X n 4 )≦M, и соответствующ ий случайный степенн ой ряд \(f_x (z;\omega ) = \mathop \sum \limits_{n = 0}^\infty a_n X_n (\omega )z^n\) . Устанавливаются тео ремы непродолжимост и почти наверное:
  1. дляf x при условиях с лабой мультипликати вности на \(\mathfrak{X}\) ,
  2. для \(f_{\tilde x}\) , где \(\mathop \mathfrak{X}\limits^ \sim = (\mathop X\limits^ \sim _n )\) есть подп оследовательность в \(\mathfrak{X}\) ,
  3. для по крайней мере од ного из рядовf x′ илиf x″ , где \(\mathfrak{X}'\) и \(\mathfrak{X}''\) — некоторые п ерестановки \(\mathfrak{X}\) , выбираемые универс ально, т. е. независимо от коэффициентовa n .
  相似文献   

8.
With each infinite grid X: ? < x ?1 < x 0 < x 1 < ? we associate the system of trigonometric splines $\{ \mathfrak{T}_j^B \}$ of class C 1(α, β), the linear space $$T^B (X)\mathop = \limits^{def} \{ \tilde u|\tilde u = \sum\limits_j {c_j \mathfrak{T}_j^B } \quad \forall c_j \in \mathbb{R}^1 \} ,$$ and the functionals g (i) ∈ (C 1(α, β))* with the biorthogonality property: $\left\langle {g(i),\mathfrak{T}_j^B } \right\rangle = \delta _{i,j}$ (here $\alpha \mathop = \limits^{def} \lim _{j \to - \infty } x_j ,\quad \beta \mathop = \limits^{def} \lim _{j \to + \infty } x_j$ ). For nested grids $\bar X \subset X$ , we show that the corresponding spaces $T^B (\bar X)$ are embedded in $T^B (X)$ and obtain decomposition and reconstruction formulas for the spline-wavelet expansion $T^B (X) = T^B (\bar X)\dot + W$ derived with the help of the system of functionals indicated above.  相似文献   

9.
LetG be an arbitrary domain in \(\bar C\) ,f a function meromorphic inG, $$M_f \mathop = \limits^{def} \mathop {\lim \sup }\limits_{G \mathrel\backepsilon z \to \partial G} \left| {f(z)} \right|< \infty ,$$ andR the sum of the principal parts in the Laurent expansions off with respect to all its poles inG. We set $$f_G (z) = R(z) - \alpha ,{\mathbf{ }}where{\mathbf{ }}\alpha = \mathop {\lim }\limits_{z \to \infty } (f(z) - R(z))$$ in case ∞?G, andα=0 in case ∞?G. It is proved that $$\left\| {f_G } \right\|_{C(\partial G)} \leqq 50(\deg f_G )M_f ,{\mathbf{ }}\left\| {f'_G } \right\|_{L_1 (\partial G)} \leqq 50(\deg f_G )V(\partial G)M_f ,$$ where $$V(\partial G) = \sup \left\{ {\left\| {r'} \right\|_{L_1 (\partial G)} :r(z) = a/(z - b),{\mathbf{ }}\left\| r \right\|_{G(\partial G)} \leqq 1} \right\}.$$   相似文献   

10.
LetD be a simply connected domain, the boundary of which is a closed Jordan curveγ; \(\mathfrak{M} = \left\{ {z_{k, n} } \right\}\) , 0≦kn; n=1, 2, 3, ..., a matrix of interpolation knots, \(\mathfrak{M} \subset \Gamma ; A_c \left( {\bar D} \right)\) the space of the functions that are analytic inD and continuous on \(\bar D; \left\{ {L_n \left( {\mathfrak{M}; f, z} \right)} \right\}\) the sequence of the Lagrange interpolation polynomials. We say that a matrix \(\mathfrak{M}\) satisfies condition (B m ), \(\mathfrak{M}\) ∈(B m ), if for some positive integerm there exist a setB m containingm points and a sequencen p p=1 of integers such that the series \(\mathop \Sigma \limits_{p = 1}^\infty \frac{1}{{n_p }}\) diverges and for all pairsn i ,n j ∈{n p } p=1 the set \(\left( {\bigcap\limits_{k = 0}^{n_i } {z_{k, n_i } } } \right)\bigcap {\left( {\bigcup\limits_{k = 0}^{n_j } {z_{k, n_j } } } \right)} \) is contained inB m . The main result reads as follows. {Let D=z: ¦z¦ \(\Gamma = \partial \bar D\) and let the matrix \(\mathfrak{M} \subset \Gamma \) satisfy condition (Bm). Then there exists a function \(f \in A_c \left( {\bar D} \right)\) such that the relation $$\mathop {\lim \sup }\limits_{n \to \infty } \left| {L_n \left( {\mathfrak{M}, f, z} \right)} \right| = \infty $$ holds almost everywhere on γ.  相似文献   

11.
We discuss the spectrum of a symmetric elliptic differential operator A with domain \(\mathop {H^m }\limits^o (\Omega ) \cap H^{2m} (\Omega )\) in regions Ω with unbounded boundary \(\dot \Omega \) , where are \(\bar \Omega \) uniformely of class C2m and on \(\dot \Omega \) the normal condition x·ν(x)≦μ for sufficient small positiveμ. We prove the A-priori-estimate \(\parallel u\parallel _{m,\Omega } \leqq c\parallel (l + r) (A - k)u\parallel _{o,\Omega } \) and show for all k>k, k≧0 suitable, there are no eigenvalues of A and by characterizing weighted Sobolev spaces with negative norm the existence of solutions \((l + r)_2 ^{ - 1} u \in \mathop H\limits^0{^m} (\Omega ) \cap H^{2m} (\Omega )\) of the equation (A?k)u=f, (1+r)f∈L2(Ω).  相似文献   

12.
13.
Основной целью работ ы является обобщение одного результата Кратца и Т раутнера [4], известного для одном ерных функциональны х рядов, на кратные ряды. Этот рез ультат касается суммируемо сти функционального ряда почти всюду при слабых пред положениях. В частности, он примен им к суммируемости по Чезаро и по Риссу. Мы рассматриваемd-кр атный ряд $$\mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty c_{k_1 ,...,k_d } f_{k_1 ,...,k_d } (x), \mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty c_{k_1 ,...,k_d }^2< \infty $$ и предполагается, что функции \(f_{k_1 ,...,k_d } (x)\) интегрируе мы по пространству с полож ительной мерой и имеют почти вс юду ограниченные фун кции Лебега для метода суммирова ния Т. Метод Т определяетсяd-мерной матрицей \(T = \{ a_{m_1 ,...,m_d ;k_1 ,...,k_d } \} \) сл едующим образом: $$t_{m_1 ,...,m_d } (x) = \mathop \sum \limits_{k_1 = 0}^\infty \cdots \mathop \sum \limits_{k_d = 0}^\infty a_{m_1 ,...,m_d ;k_1 ,...,k_d } c_{k_1 ,...,k_d } f_{k_1 ,...,k_d } (x).$$ Эти средние существу ют, поскольку мы предп олагаем, что \(a_{m_1 ,...,m_d ;k_1 ,...,k_d } = 0\) ,если max(k 1,...,k d) достаточно вели к (в зависимости, конеч но, отm 1,...,m d). При некоторых дополнительных усло виях на матрицуТ (см. (7)– (9) в разделе 3) устанавлива ется почти всюду регулярная схо димость средних \(t_{m_1 ,...,m_d } (x) \user2{} \user2{(}m_1 \user2{,}...\user2{,}m_d \user2{)} \to \infty \) . Как вспомогательный результат, в работе об общается теорема Алексича [1] о сх одимости почти всюду некоторы х подпоследовательн остей частных сумм функцио нального ряда.  相似文献   

14.
We consider repeated two-person zero-sum games in which each player has only partial information about a chance move that takes place at the beginning of the game. Under some conditions on the information pattern it is proved that \(\mathop {\lim }\limits_{n \to \infty } v_n\) exists,v n being the value of the game withn repetitions. Two functional equations are given for which \(\mathop {\lim }\limits_{n \to \infty } v_n\) is the only simultaneous solutions. We also find the least upper bound for the error term \(\left| {v_n - \mathop {\lim }\limits_{n \to \infty } v_n } \right|\) .  相似文献   

15.
We prove that $$\mathop {L_n \in Z_n }\limits^{\inf } \mathop \omega \limits^{sup^* } \mathop {f \in H_\omega }\limits^{\sup } \frac{{\left\| {f - L_n \left( f \right)} \right\|}}{{\omega \left( {\frac{\pi }{{n + 1}}} \right)}} = 1\left( {n = 0,1,2,...} \right)$$ (n=0,1,2,...), where \(\mathop {L_n \in Z_n }\limits^{\inf } \) is taken over all linear polynomial approximation methods of degree not higher than n and \(\mathop \omega \limits^{sup^* } \) over all convex moduli of continuity ω(δ).  相似文献   

16.
The algebraic independence of certain transcendental continued fractions   总被引:2,自引:0,他引:2  
In the present note the algebraic independence of certain continued fractions is proved. Especially, we prove that the Böhmer-Mahler's series \(\sum\limits_{K = 1}^\infty {\left[ {\omega _v k} \right]} {\text{ }}g_\mu ^{ - k} \left( {1 \leqslant \mu \leqslant s,1 \leqslant v \leqslant t} \right)\) are algebraically independent, where \(\mathop \omega \nolimits_1 {\text{ , }}...{\text{ , }}\mathop \omega \nolimits_{\text{t}} \) , ..., \(\mathop g\nolimits_1 {\text{ , }}...{\text{ , }}\mathop g\nolimits_s \) are some irrational numbers andg 1, ...,g s are distinct positive integers.  相似文献   

17.
We study the ultrapowers $L_1 (\mu )_\mathfrak{U} $ of aL 1(μ) space, by describing the components of the well-known representation $L_1 (\mu )_\mathfrak{U} = L_1 (\mu _\mathfrak{U} ) \oplus _1 L_1 (\nu _\mathfrak{U} )$ , and we give a representation of the projection from $L_1 (\mu )_\mathfrak{U} $ onto $L_1 (\mu _\mathfrak{U} )$ . Moreover, the subsequence splitting principle forL 1(μ) motivates the following question: if $\mathfrak{V}$ is an ultrafilter on ? and $[f_i ] \in L_1 (\mu )_\mathfrak{V} $ , is it possible to find a weakly convergent sequence (g i ) ?L 1(μ) following $\mathfrak{V}$ and a disjoint sequence (h i ) ?L 1(μ) such that [f i ]=[g i ]+[h i ]? If $\mathfrak{V}$ is a selective ultrafilter, we find a positive answer by showing that $f = [f_i ] \in L_1 (\mu )_\mathfrak{V} $ belongs to $L_1 (\mu _{_\mathfrak{V} } )$ if and only if its representatives {f i } are weakly convergent following $\mathfrak{V}$ and $f \in L_1 (\nu _\mathfrak{V} )$ if and only if it admits a representative consisting of pairwise disjoint functions. As a consequence, we obtain a new proof of the subsequence splitting principle. If $\mathfrak{V}$ is not a p-point then the above characterizations of $L_1 (\nu _{_\mathfrak{V} } )$ and $L_1 (\nu _{_\mathfrak{V} } )$ fail and the answer to the question is negative.  相似文献   

18.
A. A. Irmatov 《Acta Appl Math》2001,68(1-3):211-226
Two approaches on estimating the number of threshold functions which were recently developed by the author are discussed. Let P(K,n) denote the number of threshold functions in K-valued logic. The first approach establishes that $$P(K,n + 1) \geqslant \frac{1}{2}\left( {\mathop {K^{n - 1} }\limits_{\left\lfloor {n - 4 - 2\frac{n}{{\log _K n}}} \right\rfloor } } \right)P\left( {K,\left\lfloor {{\text{2}}\frac{n}{{\log _K n}} + 3} \right\rfloor } \right).$$ The key argument of investigation is the generalization of the result of Odlyzko on subspaces spanned by random selections of ±1-vectors. Let $E_K = \{ 0,1 \ldots ,K - 1\} $ and let E denote the set of all vectors $w_i ,i = 1, \ldots ,K^n $ , which have the form $(1,a_1 , \ldots ,a_n ),a_i \in E_K $ . Denote by $\Lambda _n (K)$ the number of all collections of different vectors $(w_{i_1 } , \ldots ,w_{i_n } ),2 \leqslant i_1 , \ldots ,i_n \leqslant \mathbb{K}^n $ , such that, for any k, $1 \leqslant k \leqslant n$ , the vector $w_{i_k } $ is minimal among all vectors from the set $E \cap {\text{span}}(w_{i_k } , \ldots ,w_{i_n } )$ . The second approach is based on topology-combinatorical techniques and allows to establish the following inequality $P(K,n) \geqslant 2\Lambda _n (K)$ .  相似文献   

19.
20.
Let $I^d $ be the d‐dimensional cube, $I^d = [0,1]^d $ , and let $F \ni f \mapsto Sf \in L_\infty (I^d ) $ be a linear operator acting on the Sobolev space F, where Fis either $$$$ or $$$$ where $$\left\| f \right\|_F = \sum\limits_{\left| m \right| = r} {\mathop {{\text{esssup}}}\limits_{x \in I^d } \left| {\frac{{\partial f^{\left| m \right|} }} {{\partial x_1^{m_1 } \partial x_2^{m_2 } \cdot \cdot \cdot \partial x_d^{m_d } }}(x)} \right|.} $$ We assume that the problem elements fsatisfy the condition $\sum\nolimits_{\left| m \right| = r} {{\text{esssup}}} _{x \in I^d } \left| {f^{(m)} (x)} \right| \leqslant 1 $ and that Sis continuous with respect to the supremum norm. We study sensitivity of optimal recovery of Sfrom inexact samples of ftaken at npoints forming a uniform grid on $I^d $ . We assume that the inaccuracy in reading the sample vector is measured in the pth norm and bounded by a nonnegative number δ. The sensitivity is defined by the difference between the optimal errors corresponding to the exact and perturbed readings, respectively. Our main result is that this difference is bounded by $\mathcal{A}\delta $ , where $\mathcal{A} $ is a positive constant independent of the number of samples. This indicates that the curse of dimension, which badly affects the optimal errors, does not extend to sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号