首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The results of studies of the reactions of ruthenium and osmium cluster carbonyls with metal alkynes, silylalkynes, propargyl alcohols and their derivatives, diynes, enynes, and ferrocenylacetylene are summarized. Intramolecular rearrangements in the cluster complexes including migrations of carbonyl, hydride, and hydrocarbon ligands as well as the metal core reorganization are considered. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 1–17, January, 2000.  相似文献   

2.
The reactions of hydrosilane and/or alkyne as well as isonitriles with rhodium and rhodium cobalt mixed metal carbonyl clusters, e.g., Rh4(CO)12 and Co2Rh2(CO)12, are studied. Novel mixed metal complexes, e.g., CoRh(CO)5 (HCCBu n ), (R3Si)2Rh(CO) n Co(CO)4, Rh(R–NC)4Co(CO)4, Co2Rh2(CO)10(HCCR), and Co2Rh2(CO)9(HCCBu n ), are synthesized and identified. The catalytic activities of these rhodium and rhodium-cobalt mixed metal complexes are examined in hydrosilyation, silylformylation, and novel silylcarbocyclization reactions. Possible mechanisms for these reactions are proposed and discussed.  相似文献   

3.
Co2(CO)8 and Te2O react to form the well known Co4(CO)10Te2, Co4(CO)11Te2 complexes and the two new cluster complexes CCo6(CO)12Te2(1), and CCo6(CO)10Te2(Te3) (2). The structures of 1 and 2 were determined by X-ray analysis, together with the triphenylphosphine derivative of 1, CCo6(CO)11(PPh3)Te2(3), which was analyzed to clarify the disordered structure of the parent compound. Complex 1 is formed by a prismatic cluster of cobalt atoms with a carbon embedded in the cage; two tellurium atoms cap the triangular faces of the prism and each cobalt atom links two terminal carbonyl groups. The complex 2 has a similar prismatic cage CCo6; two 4-Te atoms cap two rectangular faces of the prism, while other two Te atoms bridge two edges of the triangular faces and are linked each other through a third Te atom. Electron counting gives for complex 2 92 electrons: the presence of two long Co–Co distances suggests that the two excess electrons are located on Co–Co antibonding orbitals. Crystal data for 1, space group C2/c, a = 12.845(2) Å, b = 13.449(2) Å, c = 13.246(2) Å, = 91.95(2)°, Z = 4, R = 0.097 for 2555 reflections; for 2, space group Pnna, a = 17.219(5) Å, b= 14.969(6) Å, c = 9.178(4) Å, Z = 4,R = 0.037 for 3103 reflections; for 3, space group P21/c, a = 9.288(2) Å, b = 14.920(6) Å, c = 26.300(9) Å, = 99.99(2)°, Z = 4, R = 0.037 for 4300 reflections. The vibrational analysis of the complex 1 was performed and most of the (CO), (6C–Co), (Co–Co) and (Co–Co) modes were assigned. The (Co–Te) modes were interpreted on the basis of the intermolecular coupling, due to the close contact between neighboring clusters in one distinct direction in the crystal.  相似文献   

4.
The historical background of and the incentive for using ruthenium carbonyl clusters as homogeneous catalysts are outlined. Keeping in view the possible solutions the uncertainties arising from declusterification and metal colloid formation are discussed. All ruthenium cluster-catalysed reactions are broadly classified as reactions with or without carbon monoxide as one of the reactants and the basic differences between such reactions are highlighted. Some of the factors of special relevance to cluster-catalysed reaction systems are mentioned. The reactions involving carbon monoxide are then discussed. These include water-gas-shift reaction, carbon monoxide hydrogenation, hydroformylation, reductive carbonylation of nitrobenzene and other carbonylation reactions. Hydrogenation, transfer hydrogenation, isomerisation and a few other reactions are then discussed. For all these reactions, special emphasis is laid on well-characterised cluster complexes that have been proposed as catalytic intermediates. Finally an attempt has been made to identify the path that future research in cluster catalysis is likely to follow.  相似文献   

5.
Recent developments in cluster synthesis have produced many high nuclearity metal clusters of discretesize andshape approaching that of small particles. Some of these clusters have metal arrangements resemblingfragments of metallic lattices and thus may be considered as aminiature bulk. Some are related to the quasicrystalline phase. Yet others have little or no structural features in common with that of the bulk. These metal clusters of definitivesize andshape provide an opportunity for the study of the evolution of band structure fromatomic tomolecular to thebulk. The focus of this review is on the unusual structures and properties of well-defined high nuclearity metal clusters and their possible relations or variant to the bulk state. Specifically, interesting electronic, optical, and magnetic properties of metal clusters in the quantum-size regime are described. Structural systematics of high nuclearity metal clusters, ranging from thecluster-of-clusters to thelayer-by-layer growth sequence, are discussed. It is hoped that further studies of the structures and properties of large metal cluster compounds of discretesize andshape will shed light on how, when, and why metallic or other bulk behavior begins and ends.  相似文献   

6.
The electrospray ionisation mass spectra (EDESI-MS) of Ru6C(CO)16(PPh3) and Ir4(CO)11(PR3) (PR3=PPh3, P(p-C6H4OMe)3, P(p-C6H4NMe2)3, P(p-C6H4Cl)3, P(OPh)3, P(OMe)3, PO3C5H9) are described and the relative importance of carbonyl loss versus phosphine loss as a fragmentation pathway is assessed. Qualitatively, the phosphine ligands bind more strongly to Ir4(CO)11 clusters than to Ru6C(CO)16. The influence on the collision cell pressure on MS/MS spectra of transition metal carbonyl cluster anions is also explored showing that a greater, simultaneous, distribution of fragment ions is produced as the collision cell pressure is increased.Dedicated to Prof. Brian F. G. Johnson on the occasion of his retirement.  相似文献   

7.
Co2(CO)8 and Me2P(S)P(S)Me2 react to form the two cluster complexes: Co4(CO)9S(PMe2)2) (1) and Co3(CO)7S(SPMe2) (2). The strucure of1 and of the disubstituted triphenyl phosphine derivative of2. Co3(CO)5(PPh3)2S (SPMe3) (2a) were determined. Compound1 contains a quasi-planar rhomboidal Co4 cluster formed by two Co3 isosceles triangles sharing a Co-Co edge. One triangle is capped by a sulfur atom, the other triangle has two edge-bridging PMe2 moieties. Electron counting gives 64 electrons corresponding to a planar system; the distribution of long Co-Co distances, in particular in the triangle bearing PMe2 bridges, suggests that the excess electrons are located on Co-Co antibonding ortibals. Compound2a contains a Co3S cluster with one side bridged by a SPMe2 unit forming a four-membered Co2SP ring. The substitution of two CO groups with two PPh3 causes a large deformation of the cluster Co-Co bondscis to these two phosphorus atoms. Crystal data for1, space group P1,a = 9.728(2) Å,b = 10.288(2) Å,c = 11.860(3) Å, = 86.41(2)°, = 76.20(2)°, = 80.37(5)°,Z = 2, 5300 reflections,R = 0.0398; for2a, space group P1,a = 9.78(3) Å,b = 13.05(4) Å,c = 18.28(6) Å, = 93.23(3)°, = 99.17(2)°, = 97.26(6)°,Z = 2, 2976 reflections,R = 0.0579.  相似文献   

8.
The crystal structure of the Os3(μ,η2-O=CC6H5)(η3-C3H5)(CO)9 cluster synthesized by the reaction of the (μ-H)Os3(μ-O=CC6H5)(CO)10 complex with allylamine in chloroform was determined by X-ray analysis. Prolonged storage of the reaction mixture led to N-C bond cleavage in allylamine and η3-addition of the allyl fragment at one of the Os atoms (Os-C 2.246 ?, 2.248 ?, and 2.273 ?). The unit cell parameters of the complex are a = 9.494(1) ?, b = 10.479(1) ?, c = 12.474(2) ?, α = 84.55(1)°, β = 70.08(1)°, γ = 70.72(1)°, V = 1255.8(4), ?3, space group P , Z = 2; C19H10O10Os3; d calc = 2.922 g/cm3, 3085 I hkl > 2σ I of 3611 collected reflections; R = 0.0252. The structure of Os3(μ,η2-O=CC6H5)(η3-C3H5)(CO)9 is molecular. The plane of the Os3 triangle and the OsCOOs plane are connected according to the “butterfly” principle with an angle of 103.4° between them. The Os-Os distances in the cluster core vary from 2.836(1) ? to 2.844(1) ?; the Os-Ccarb distances are 1.88(1)–1.97(1) ?; the distances to the atoms of the bridging ligands are Os-C 2.11(1) ?, Os-O 2.14(1) ?; the O-C bridging bond is 1.24(1) ?. of the Os3(μ,η2-O=CC6H5)(η3-C3H5)(CO)9 triosmium cluster were studied theoretically. The potential curve of the internal rotation of the allyl ligand relative to the Os(1)-C(9) bond was determined. The rotation barrier of the allyl ligand in crystal relative to the Os(1)-C(9) bond is 8.38 kJ/mol, and the rotation of the ligand is not hindered. The effects of the intra-and intermolecular interactions on the conformation state of the cluster complex are considered. Original Russian Text Copyright ? 2008 by V. A. Maksakov, N. V. Pervukhina, N. V. Podberezskaya, M. Yu. Afonin, V. A. Potemkin, and V. P. Kirin __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 49, No. 5, pp. 926–932, September–October, 2008.  相似文献   

9.
The homoleptic group 5 carbonylates [M(CO)6] (M=Nb, Ta) serve as ligands in carbonyl-terminated heterobimetallic AgmMn clusters containing 3 to 11 metal atoms. Based on our serendipitous [Ag6{Nb(CO)6}4]2+ ( 4 a 2+) precedent, we established access to such AgmMn clusters of the composition [Agm{M(CO)6}n]x (M=Nb, Ta; m=1, 2, 6; n=2, 3, 4, 5; x=1−, 1+, 2+). Salts of those molecular cluster ions were synthesized by the reaction of [NEt4][M(CO)6] and Ag[Al(ORF)4] (RF=C(CF3)3) in the correct stoichiometry in 1,2,3,4-tetrafluorobenzene at −35 °C. The solid-state structures were determined by single-crystal X-ray diffraction methods and, owing to the thermal instability of the clusters, a limited scope of spectroscopic methods. In addition, DFT-based AIM calculations were performed to provide an understanding of the bonding within these clusters. Apparently, the clusters 3 + (m=6, n=5) and 4 2+ (m=6, n=4) are superatom complexes with trigonal-prismatic or octahedral Ag6 superatom cores. The [M(CO)6] ions then bind through three CO units as tridentate chelate ligands to the superatom core, giving overall structures related to tetrahedral AX4 ( 4 2+) or trigonal bipyramidal AX5 molecules ( 3 +).  相似文献   

10.
Reactions of a tetranuclear palladium cluster [Pd(CO)(OAc)[4 with C1-C3 alcohols have been found to proceed simultaneously via several routes to form CO, and dialkyl carbonates, the products of oxidation of coordinated CO ligands, along with carbonyl compounds which form due to oxidation of the corresponding alcohols. Alkoxy, alkoxycarbonyl, and acyl palladium derivatives are shown to be the intermediates of the reactions studied.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2456–2459, October, 1996.  相似文献   

11.
Mono- and disubstituted cluster metal-containing monomers were obtained under mild conditions on interaction of Rh6(CO)16 with 4-vinylpyridine (4-ViPy) in the presence of N-trimethylaminoxide. These products were characterized by IR and1H NMR spectroscopy and by elemental and X-ray analyses. Rh6(CO)15(4-ViPy) was found to be an octahedral cluster with eleven terminal and four 3-bridging carbonyl ligands. 4-ViPy is linked with the Rh(3) atom through the N atom and occupies the coordination site of the twelfth CO terminal ligand. The mean value of the Rh-Rh bond length is 2.762 Å. The unsaturated ligand has little or no effect on the geometry of the starting cluster and its double bond retains the ability to undergo addition reactions.For part 28, seeRuss. Chem. Bull., 1993, 453.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 975–979, May, 1993.  相似文献   

12.
A new laser vaporization flow reactor (LVFR) is described consisting of a laser ablation cluster source combined with a fast flowtube reactor for the production and isolation of ligand-coated metal clusters. The source includes high repetition rate laser vaporization with a 100 Hz KrF (248 nm) excimer laser, while cluster growth and passivation with ligands takes place in a flowtube with ligand addition via a nebulizer spray. Samples are isolated in a low temperature trap and solutions containing the clusters are analyzed with laser desorption time-of-flight mass spectrometry. Initial experiments with this apparatus have trapped Ti x (ethylenediamine) y complexes which apparently have linear metal units with octahedral ligand coordination. Other experiments have produced and isolated clusters of the form Ti x O y (THF) z that apparently have linear metal oxide cores and larger (TiO2) x (THF) y nanoparticle species. The isolation of these new cluster species suggest that the LVFR instrument has considerable potential for the production of new nanocluster materials.  相似文献   

13.
    
The reaction of the tetranuclear cluster Pd4(CO)4(OOCCF3)4 witho-nitrosotoluene afforded the Pd11-containing complex [o-(NO)(CH2)C6H4]2Pd2(μ-OOCCF3)2. The elimination of CO2 and the formation of organic products of transformation of tolylnitrene species (azotoluene, ditolylamine, and tolylisocyanate) were observed in the course of the reaction. The title complex was characterized by IR and1H NMR spectroscopy. Its structure was established by X-ray diffraction analysis. It was suggested that the reaction proceeds through intermediate formation of nitrene complexes. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 147–150, January, 2000.  相似文献   

14.
The reaction of the tetranuclear cluster Pd4(CO)4(OOCCF3)4 witho-nitrosotoluene afforded the Pd11-containing complex [o-(NO)(CH2)C6H4]2Pd2(μ-OOCCF3)2. The elimination of CO2 and the formation of organic products of transformation of tolylnitrene species (azotoluene, ditolylamine, and tolylisocyanate) were observed in the course of the reaction. The title complex was characterized by IR and1H NMR spectroscopy. Its structure was established by X-ray diffraction analysis. It was suggested that the reaction proceeds through intermediate formation of nitrene complexes. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 147–150, January, 2000.  相似文献   

15.
Treatment of [Os3(CO)73-S)2(μ-dppm)] (1) with Me3NO in toluene at 80 °C affords the trinuclear cluster [Os3(CO)63-S)2(NMe3)(μ-dppm)] (2) and the hexanuclear cluster [Os6(CO)123-S)4(μ-dppm)2] (3) in 30% and 51% yields, respectively. The reaction of 1 with [Os3(CO)10(MeCN)2] in refluxing benzene at 80 °C gives the hexanuclear cluster [Os6(CO)143-S)2(μ-dppm)] (4) in 15% yield. Compound 2 reacts with CO, PPh3 and P(OMe)3 at room temperature to give 1, [Os3(CO)63-S)2(μ-dppm)(PPh3)] (5) and [Os3(CO)63-S)2(μ-dppm){P(OMe)3}] (6), respectively; in high yields indicating that the NMe3 ligand is weakly bound. Compound 1 reacts with PPh3 in presence of Me3NO to afford 5, 2 and 3 in 53%, 6% and 18% yields, respectively, whereas with P(OMe)31 gives only 6 in 84% yield. Compound 3 reacts with CO at 98 °C to regenerate 1 by the cleavage of the three unsupported osmium-osmium bonds. The molecular structures of 4 and 6 have been unambiguously determined by single crystal X-ray diffraction studies. The hexanuclear compound 3 appears to be a64-electron butterfly core with four triply bridging sulfido ligands and two bridging dppm ligands based on the spectroscopic and analytical data. The metal core of 4 can be described as a central tetrahedral array capped on two faces with two additional osmium atoms. The triply bridging sulfido ligands face cap the two tetrahedral arrays formed by metal capping of the two faces of the central tetrahedron. The dppm ligand bridges one edge of one of the external tetrahedral arrays. Compounds 5 and 6 are formed by the displacement of equatorial carbonyl group of 1 by a PPh3 and P(OMe)3 ligand respectively and their structures are comparable to that of 1.  相似文献   

16.
17.
Adsorption of pyridine on Nin‐clusters (with n = 2,3,4) is studied by quantum chemical calculations at B3LYP/LANL2DZ and B3LYP/6‐311G** levels. First, Nin‐clusters are investigated for accessible structure and electronic states. The lowest electronic state with four unpaired electrons is predicted for Ni4‐cluster based on geometry and electronic structure, showing that the cluster stability nicely depends on number of unpaired electrons. Correction for basis set superposition error of metal‐metal bond is appreciable and has increasing effect on cluster binding energy. Next, adsorption of pyridine in planar and vertical adsorption modes is investigated on rhombus Ni4‐cluster. The vertical mode is found (at B3LYP/6‐311G** level) as the most favorable adsorption mode. Adsorption energy (ΔEads) depends on cluster size; adsorption on Ni4‐cluster is most favorable with ΔEads = ?207.33 kJ/mol. The natural bond orbital analysis reveals the charge transfer in adsorbate/metal‐cluster. Results of investigations for the Ni2‐ and Ni3‐cluster are also presented. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
Starting from a hypothetical but fundamental charge/discharge sequence, the topic of nonlinear optical switching in atomic clusters built from silicon and alkali metals is opened up. The outcomes presented in this work, obtained with ab initio methods of exceptional predictive capabilities, offer strong evidences that sizable hyperpolarizability contrasts between neutral and charged alkali metal doped cluster forms might be simultaneously accomplished. The observed switching procedure involves redox polyatomic clusters formed by Si atoms. These centers function as electron acceptors at the ground state and as electron donors at the excited states facilitating low energy charge transfer transitions upon electronic excitation. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
New high yield routes to the high nuclearity hydrido carbonyl clusters [H5Os10(CO)24]- and [H4Os10(CO)24]2-, model systems for the chemisorption of CO and H2 on metal surfaces, are reported. [H5Os10(CO)24]- is obtained in good yields by hydrogenation (1 atm) at 200°C of physisorbed [Os(CO)3(OH)2]n whereas in refluxing ethylene glycol solution, that is less acidic than the silica surface, [H4Os10(CO)24]2- is obtained in high yield starting from [Os(CO)3(OH)2]n or, more conveniently, from -[Os(CO)3Cl2]2 in the presence of the stoichiometric amount of sodium carbonate. The quantitative equilibrium
is confirmed.  相似文献   

20.
Abstract

Calix[4]arenes are versatile ligands capable of forming a wide range of cluster motifs when reacted with 3d, 4f or 3d/4f metal ions. Synthetic modification at the calix[4]arene methylene bridge offers a unique opportunity to explore cluster formation with these alternative building blocks. Here, we present the synthesis of a range of bis-calix[4]arenes that are tethered by alkyl chains, as well as exploratory structural studies into cluster-forming reactions. Single crystals were formed in four cases, and from the X-ray structures elucidated it is possible to conclude that sufficiently long alkyl tethers allow for the formation of established cluster topologies without disruption to the core coordination chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号