首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The (1)H NMR spectra of RNAs representing E. coli 23S rRNA helix 69 with [1,3-(15)N]pseudouridine modification at specific sites reveal unique roles for pseudouridine in stabilizing base-stacking interactions in the hairpin loop region.  相似文献   

2.
The synthesis of 3-methylpseudouridine (m(3)Psi) phosphoramidite, 5'-O-[benzhydryloxybis(trimethylsilyloxy)silyl]-2'-O-[bis(2-acetoxyethoxy)methyl]-3-methylpseudouridine-3'-(methyl-N,N-diisopropyl)phosphoramidite, is reported. Selective pivaloyloxymethyl protection of the Psi N1 followed by methylation at N3 was used to generate the naturally occurring pseudouridine analogue. The m(3)Psi phosphoramidite was used in combination with pseudouridine (Psi) and standard base phosphoramidites to synthesize a 19-nucleotide RNA representing helix 69 of Escherichia coli 23S ribosomal RNA (rRNA) (residues 1906-1924), containing a single m(3)Psi at position 1915 and two Psi's at positions 1911 and 1917. Our synthesis of the fully modified helix 69 RNA demonstrates the ability to make milligram quantities of RNA that can be used for further high-resolution structure studies. Site-selective introduction of the methyl group at the N3 position of pseudouridine at position 1915 causes a slight increase in the thermodynamic stability of the RNA hairpin relative to pseudouridine; RNAs containing either uridine or 3-methyluridine at position 1915 have similar stability. One-dimensional imino proton NMR and circular dichroism spectra of the modified RNAs reveal that the methyl group does not cause any substantial changes in the RNA hairpin structure.  相似文献   

3.
A hairpin model of the group I intron P5b loop was synthesized with [8-13C-7-15N]-guanosine in the GG.UU metal binding site, [7-15N]-guanosine at a nonbinding site, and [3-15N]-uridine. 15N NMR showed specific binding for Co(NH3)63+ and K+, but not for Zn2+, Cd2+, or Mg2+.  相似文献   

4.
Bacterial tRNA-specific adenosine deaminase (TadA) catalyzes the essential deamination of adenosine to inosine at the wobble position of tRNAs and is necessary to permit a single tRNA species to recognize multiple codons. The transition state structure of Escherichia coli TadA was characterized by kinetic isotope effects (KIEs) and quantum chemical calculations. A stem loop of E. coli tRNA(Arg2) was used as a minimized TadA substrate, and its adenylate editing site was isotopically labeled as [1'-(3)H], [5'-(3)H2], [1'-(14)C], [6-(13)C], [6-(15)N], [6-(13)C, 6-(15)N] and [1-(15)N]. The intrinsic KIEs of 1.014, 1.022, 0.994, 1.014 and 0.963 were obtained for [6-(13)C]-, [6-(15)N]-, [1-(15)N]-, [1'-(3)H]-, [5'-(3)H2]-labeled substrates, respectively. The suite of KIEs are consistent with a late SNAr transition state with a complete, pro-S-face hydroxyl attack and nearly complete N1 protonation. A significant N6-C6 dissociation at the transition state of TadA is indicated by the large [6-(15)N] KIE of 1.022 and corresponds to an N6-C6 distance of 2.0 A in the transition state structure. Another remarkable feature of the E. coli TadA transition state structure is the Glu70-mediated, partial proton transfer from the hydroxyl nucleophile to the N6 leaving group. KIEs correspond to H-O and H-N distances of 2.02 and 1.60 A, respectively. The large inverse [5'-(3)H] KIE of -3.7% and modest normal [1'-(3)H] KIE of 1.4% indicate that significant ribosyl 5'-reconfiguration and purine rotation occur on the path to the transition state. The late SNAr transition-state established here for E. coli TadA is similar to the late transition state reported for cytidine deaminase. It differs from the early SNAr transition states described recently for the adenosine deaminases from human, bovine, and Plasmodium falciparum sources. The ecTadA transition state structure reveals the detailed architecture for enzymatic catalysis. This approach should be readily transferable for transition state characterization of other RNA editing enzymes.  相似文献   

5.
A decamer duplex model of Domain II of the hammerhead ribozyme was synthesized with [8-13C-1,7,NH2-15N3]-guanosine at the known metal binding site, G10.1 and, for comparison, [2-13C-1,7,NH2-15N3]-guanosine at G16.2. The 15N NMR chemical shifts of the labeled N7s monitored during addition of Mg2+, Cd2+, and Zn2+ showed the same preference for binding at G10.1 over G16.2 for each metal. These results demonstrate that 15N labeling can be used to evaluate the binding of different metals, including Mg2+, to a given nitrogen, as well as to compare the binding potential of different sites.  相似文献   

6.
Cis-syn thymine dimers are the major photoproducts of DNA and are the principal cause of mutations induced by sunlight. To better understand the nature of base pairing with cis-syn thymine dimers, we have synthesized a decamer oligodeoxynucleotide (ODN) containing a cis-syn thymine dimer labeled at the N3 of both T's with 15N by two efficient routes from [3-15N]-thymidine phosphoramidite. In the postsynthetic irradiation route, an ODN containing an adjacent pair of [3-15N]-labeled T's was irradiated and the cis-syn dimer-containing ODN isolated by HPLC. In the mixed building block route, a mixture of cis-syn and trans-syn dimer-containing ODNs was synthesized from a mixture of [3-15N]-labeled thymine dimer phosphoramidites after which the cis-syn dimer-containing ODN was isolated by HPLC. The N3-nitrogen and imino proton signals of an (15)N-labeled thymine dimer-containing decamer duplex were assigned by 2D 1H-15N heterocorrelated HSQC NMR spectroscopy, and the 15N-1H coupling constant was found to be 1.8 Hz greater for the 5'-T than for the 3'-T. The larger coupling constant is indicative of weaker H-bonding that is consistent with the more distorted nature of the 5'-base pair found in solution state NMR and crystallographic structures.  相似文献   

7.
RNA containing 5-fluorouridine, [f 5U]RNA, has been used as a mechanistic probe for the pseudouridine synthases, which convert uridine in RNA to its C-glycoside isomer, pseudouridine. Hydrated products of f 5U were attributed to ester hydrolysis of a covalent complex between an essential aspartic acid residue and f 5U, and the results were construed as strong support for a mechanism involving Michael addition by the aspartic acid residue. Labeling studies with [18O]water are now reported that rule out such ester hydrolysis in one pseudouridine synthase, TruB. The aspartic acid residue does not become labeled, and the hydroxyl group in the hydrated product of f 5U derives directly from solvent. The hydrated product, therefore, cannot be construed to support Michael addition during the conversion of uridine to pseudouridine, but the results do not rule out such a mechanism. A hypothesis is offered for the seemingly disparate behavior of different pseudouridine synthases toward [f 5U]RNA.  相似文献   

8.
The transformation of acid chlorides (RC(O)Cl) to organic nitriles (RC[triple bond]N) by the terminal niobium nitride anion [N[triple bond]Nb(N[Np]Ar)3]- ([1a-N]-, where Np = neopentyl and Ar = 3,5-Me2C6H3) via isovalent N for O(Cl) metathetical exchange is presented. Nitrido anion [1a-N]- is obtained in a heterodinuclear N2 scission reaction employing the molybdenum trisamide system, Mo(N[R]Ar)3 (R = t-Bu, 2a; R = Np, 2b), as a reaction partner. Reductive scission of the heterodinuclear bridging N2 complexes, (Ar[R]N)3Mo-(mu-N2)Nb(N[Np]Ar)3 (R = t-Bu, 3b; R = Np, 3c) with sodium amalgam provides 1 equiv each of the salt Na[1a-N] and neutral N[triple bond]Mo(N[R]Ar)3 (R = t-Bu, 2a-N; R = Np, 2b-N). Separation of 2-N from Na[1a-N] is readily achieved. Treatment of salt Na[1a-N] with acid chloride substrates in tetrahydrofuran (THF) furnishes the corresponding organic nitriles concomitant with the formation of NaCl and the oxo niobium complex O[triple bond]Nb(N[Np]Ar)3 (1a-O). Utilization of 15N-labeled 15N2 gas in this chemistry affords a series of 15N-labeled organic nitriles establishing the utility of anion [1a-N]- as a reagent for the 15N-labeling of organic molecules. Synthetic and computational studies on model niobium systems provide evidence for the intermediacy of both a linear acylimido and niobacyclobutene species along the pathway to organic nitrile formation. High-yield recycling of oxo 1a-O to a niobium triflate complex appropriate for heterodinuclear N2 scission has been developed. Specifically, addition of triflic anhydride (Tf2O, where Tf = SO2CF3) to an Et2O solution of 1a-O provides the bistriflate complex, Nb(OTf)2(N[Np]Ar)3 (1a-(OTf)2), in near quantitative yield. One-electron reduction of 1a-(OTf)2 with either cobaltocene (Cp2Co) or Mg(THF)3(anthracene) provided the monotriflato complex, Nb(OTf)(N[Np]Ar)3 (1a-(OTf)), which efficiently regenerates complexes 3b and 3c when treated with the molybdenum dinitrogen anions [N2Mo(N[t-Bu]Ar)3]- ([2a-N2]-) or [N2Mo(N[Np]Ar)3]- ([2b-N2]-), respectively.  相似文献   

9.
A capillary gas chromatographic-mass spectrometric method for the simultaneous determination of stable isotopically labelled L-histidine (L-[3,3-2H2,1',3'-15N2]histidine, L-His-[M + 4]) and urocanic acid ([3-2H,1',3'-15N2]urocanic acid, UA-[M + 3]) in human plasma was developed using DL-[2,3,3,5'-2H4,2'-13C,1',3'-15N2]histidine (DL-His-[M + 7]) and [2,3,5'-2H3,2'-13C,1',3'-15N2]urocanic acid (UA-[M + 6]) as internal standards. L-Histidine and urocanic acid were derivatized to alpha N-(trifluoroacetyl)-imN-(ethoxycarbonyl)-L-histidine n-butyl ester and imN-(ethoxycarbonyl)urocanic acid n-butyl ester. Quantification was carried out by selected ion monitoring of the molecular ions of the respective derivatives of L-His-[M + 4], DL-His-[M + 7], UA-[M + 3] and UA-[M + 6]. The sensitivity, specificity, precision and accuracy of the method were demonstrated to be satisfactory for measuring plasma concentrations of L-His-[M + 4] and UA-[M + 3] following administration of trace amounts of L-His-[M + 4] to humans.  相似文献   

10.
Reaction between the Os(VI)-nitrido complex, trans-[OsVI(tpy)(Cl)2(N)]PF6 (tpy = 2,2':6',2' '-terpyridine), and ammonia (NH3) under N2 in dry CH3CN gives the mu-1,3-azido bridged [OsII-N3-OsII]- dimer, trans,trans-NH4[(tpy)(Cl)2OsII(N3)OsII(Cl)2(tpy)]. It undergoes air oxidation to give the [OsIII-N3-OsIII]+ analogue, trans,trans-[(tpy)(Cl)2OsIII(N3)OsIII(Cl)2(tpy)]PF6 ([OsIII-N3-OsIII]PF6), which has been isolated and characterized. The structural formulation as a mu-1,3-N3 bridged complex has been established by infrared and 15N NMR measurements on the 15N-labeled forms, [OsIII-14N=15N=14N-OsIII]+, [OsIII-15N=14N=15N-OsIII]+, and [OsIII-15N=15N=15N-OsIII]+. Cyclic voltammetric measurements in 0.2 M Bu4NPF6/CH3CN reveal the existence of five chemically reversible waves from 1.40 to -0.12 V for couples ranging from OsV-OsIV/OsIV-OsIV to OsIII-OsII/OsII-OsII. DeltaE1/2 values for couples adjacent to the three mixed-valence forms are 0.19 V for OsIII-OsII, 0.52 V for OsIV-OsIII, and >0.71 V for OsV-OsIV. In CH3CN at 60 degrees C, [OsIII-N3-OsIII]+ undergoes a [2 + 3] cycloaddition with CH3CN at the mu-N3- bridge followed by a solvolysis to give trans-[OsIII(tpy)(Cl)2(5-MeCN4)] and trans-[OsIII(tpy)(Cl)2(NCCH3)]PF6.  相似文献   

11.
Reactions between the Os(VI)-nitrido complexes, [OsVI(L2)(Cl)3(N)] (L2 = 2,2'-bipyridine (bpy) ([1]), 4,4'-dimethyl-2,2'-bipyridine (Me2bpy), 1,10-phenanthroline (phen), and 4,7-diphenyl-1,10-phenanthroline (Ph2phen)), and bis-(triphenylphosphoranylidene)ammonium azide (PPNN3) in dry CH3CN at 60 degrees C under N2 give the corresponding Os(IV)-azidoimido complexes, [OsIV(L2)(Cl)3(NN3)]- (L2 = bpy = [2]-, L2 = Me2bpy = [3]-, L2 = phen = [4]-, and L2 = Ph2phen = [5]-) as their PPN+ salts. The formulation of the N42- ligand has been substantiated by 15N-labeling, IR, and 15N NMR measurements. Hydroxylation of [2]- at Nalpha with O<--NMe3.3H2O occurs to give the Os(IV)-azidohydroxoamido complex, [OsIV(bpy)(Cl)3(N(OH)N3)] ([6]), which, when deprotonated, undergoes dinitrogen elimination to give the Os(II)-dinitrogen oxide complex, [OsII(bpy)(Cl)3(N2O)]- ([7]-). They are the first well-characterized examples of each kind of complex for Os.  相似文献   

12.
Zn(II) complexes of 1-oxa-4,7,10-triazacyclododecane (12[ane]N3O), 1,5,9-triazacyclododecane (12[ane]N3), and 1-hydroxyethyl-1,4,7-triazacyclononane (9[ane]N3OH) promote cleavage of the RNA analogue, 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) at pH 8.0, I=0.10 M (NaCl), 25 degrees C with second-order rate constants of 8.9x10(-3), 9.0x10(-3), and 3.3x10(-3) M-1 s-1, respectively. Cleavage of HpPNP by these catalysts is inhibited by uridine with inhibition constants (Ki) of 1.2, 0.46, and 45 mM, respectively, under these conditions. Binding constants derived from these inhibition constants are 2-200-fold larger than those for binding of related Zn(II) complexes to phosphate diesters under similar conditions, suggesting that uridine sequences in RNA will inhibit Zn(II)-catalyzed cleavage by competing with phosphate diester binding sites. Further studies are carried out that utilize pH-potentiometric titrations to monitor uridine binding to five Zn(II) macrocyclic complexes in aqueous solution at 25 degrees C, I=0.10 M (NaCl). The data are consistent with binding of the Zn(II) complexes to the N3-deprotonated form of uridine to give log KU.-values of 5.29, 4.57, 4.56, 3.47, and 2.65 for the Zn(II) complexes of 12[ane]N3, 12[ane]N4, 12[ane]N3O, 15[ane]N3O2, and 9[ane]N3OH, respectively (12[ane]N4=1,4,7,10-tetraazacyclododecane, 15[ane]N3O2=1,4-dioxa-7,10,13-triazacyclopentadecane). For the five Zn(II) complexes studied, there is a linear relationship between uridine anion binding constants and hydroxide binding constants.  相似文献   

13.
Atmospheric pressure chemical ionization mass spectrometry (APCI-MS) has been used to characterize the air-sensitive paramagnetic organouranium azide and nitride complexes [(C5Me5)2UN3(mu-N3)]3 and [(C5Me5)U(mu-I)2]3N, respectively. The trimetallic complex [(C5Me5)U(mu-I)2]3E had been identified by X-ray crystallography, but the data did not definitively identify E as N3- versus O2- or (OH)-, a common problem in heavy-element nitride complexes involving metals with variable oxidation states. A comparison of the 250 degrees C APCI-MS spectra of products made from NaN3 and Na15NNN showed mixed [M]+ and [M + H]+ envelopes at expected ion intensities for the 14N and 15N isotopomers. A compilation of U-C(C5Me5) and U-I bond distance data for U3+ and U4+ is also reported that shows that the ranges for the two oxidation states have significant overlap.  相似文献   

14.
K K Yeung  C A Lucy 《Electrophoresis》1999,20(12):2554-2559
Separation of isotopically labeled [14N]/[15N] ammonium was performed with capillary electrophoresis. This ultrahigh-resolution separation was based on mobility counterbalance with precise control of the anodic electroosmotic flow. Mixtures of zwitterionic surfactant (Rewoteric AM CAS U) and cationic surfactant (cetyltrimethylammonium bromide) were used as buffer additives to modify the electroosmotic mobility. Indirect ultraviolet detection was used with benzyltributylammonium as the buffer coion. Baseline-resolved peaks of [14N]- and [15N]ammonium were obtained within 11 min. The detection limit was 0.01 mM for both [14N]-and [15N]ammonium. Linear calibration in concentration was observed up to 1.0 mM for [15N]ammonium and 2.0 mM for [14N]ammonium. Calibration of the isotopic ratio, [15N]ammonium concentration to total ([14N] and [15N])ammonium, was valid from 5 to 95%.  相似文献   

15.
The fluoride ion acceptor properties of OsO4 and OsO3F2 were investigated. The salts [N(CH3)4][OsO4F] and [N(CH3)4]2[OsO4F2] were prepared by the reactions of OsO4 with stoichiometric amounts of [N(CH3)4][F] in CH3CN solvent. The salts [N(CH3)4][OsO3F3] and [NO][OsO3F3] were prepared by the reactions of OsO3F2 with a stoichiometric amount of [N(CH3)4][F] in CH3CN solvent and with excess NOF, respectively. The OsO4F- anion was fully structurally characterized in the solid state by vibrational spectroscopy and by a single-crystal X-ray diffraction study of [N(CH3)4][OsO4F]: Abm2, a = 7.017(1) A, b = 11.401(2) A, c = 10.925(2) A, V = 874.1(3) A3, Z = 4, and R = 0.0282 at -50 degrees C. The cis-OsO4F2(2-) anion was characterized in the solid state by vibrational spectroscopy, and previous claims regarding the cis-OsO4F2(2-) anion are shown to be erroneous. The fac-OsO3F3- anion was fully structurally characterized in CH3CN solution by 19F NMR spectroscopy and in the solid state by vibrational spectroscopy of its N(CH3)4+ and NO+ salts and by a single-crystal X-ray diffraction study of [N(CH3)4][OsO3F3]: C2/c, a = 16.347(4) A, b = 13.475(3) A, c = 11.436(3) A, beta = 134.128(4) degrees, V = 1808.1(7) A3, Z = 8, and R = 0.0614 at -117 degrees C. The geometrical parameters and vibrational frequencies of OsO4F-, cis-OsO4F2(2-), monomeric OsO3F2, and fac-OsO3F3- and the fluoride affinities of OsO4 and monomeric OsO3F2 were calculated using density functional theory methods.  相似文献   

16.
The cyclophosphazene hydrazide gem-N3P3Ph2[N(Me)NH2]4 was reacted with o-hydroxybenzaldehyde to afford the multisite coordination ligand gem-N3P3Ph2[N(Me)N=CHC6H4-2-OH]4 (LH4). The latter reacted with copper(II) salts to afford a novel tetranuclear copper assembly {N3P3Ph2[N(Me)N=CHC6H4-2-O]4Cu2}2, which contains, remarkably, 15 contiguous inorganic rings.  相似文献   

17.

Abstract  

The synthesis of [1-15N,2-13C]-difloxacin, an arylfluoroquinolone antibacterial agent, is reported. As a crucial initial step, the starting materials ethyl 2,4,5-trifluorobenzoylacetate, [formyl-13C]-triethyl orthoformate, and [15N]-4-fluoroaniline were reacted to ethyl [15N,3-13C]-3-(4-fluoroanilino)-2-(2,4,5-trifluorobenzoyl)acrylate. After cyclization and ester cleavage, the resulting intermediate was reacted with 1-methylpiperazine to [1-15N,2-13C]-1-(4-fluorophenyl)-6-fluoro-7-(4-methyl-1-piperazinyl)-1,4-dihydro-4-oxoquinoline-3-carboxylate, i.e., [1-15N,2-13C]-difloxacin. The overall yield was 62% based on the non-labeled and 43% based on the labeled starting materials (both used in 1.4 molar excess). The product was identified by 1H-, 13C-, and 15N-NMR spectroscopy and by cochromatography (TLC, HPLC) with an authentic reference; its purity (HPLC) was above 98%. Prior to synthesis of [1-15N,2-13C]-difloxacin, non-labeled difloxacin was synthesized in order to optimize procedures and to identify and characterize all intermediates.  相似文献   

18.
Lamellar structure of poly(Ala-Gly) or (AG)n in the solid was examined using 13C solid-state NMR and statistical mechanical approaches. Two doubly labeled versions, [1-13C]Gly14[1-13C]Ala15- and [1-13C]Gly18[1-13C]Ala19 of (AG)15 were examined by two-dimensional (2D) 13C spin diffusion NMR in the solid state. In addition five doubly labeled [15N,13C]-versions of the same peptide, (AG) 15 and 15 versions labeled [3-13C] in each of the successive Ala residues were utilized for REDOR and 13C CP/MAS NMR measurements, respectively. The observed spin diffusion NMR spectra were consistent with a structure containing a combination of distorted beta-turns with a large distribution of the torsion angles and antiparallel beta-sheets. The relative proportion of the distorted beta-turn form was evaluated by examination of 13C CP/MAS NMR spectra of [3-13C]Ala-(AG)15. In addition, REDOR determinations showed five kinds of atomic distances between doubly labeled 13C and 15N nuclei which were also interpreted in terms of a combination of beta-sheets and beta-turns. Our statistical mechanical analysis is in excellent agreement with our Ala Cbeta 13C CP/MAS NMR data strongly suggesting that (AG)15 has a lamellar structure.  相似文献   

19.
Early transition metal catalysts [N,N]MCln, in which [N,N] is N-(2,6-diisopropylphenyl) pyridine-2-carboxaldimine (C18H22N2, NN-1), N-(2,6-diisopropylphenyl)-6-methylpyridine-2- carboxaldimine (C19H24N2, NN-2), N-(2,4,6-trimethylphenyl)pyridine-2-carboxaldimine (CIsH16N2, NN-3), M is Ti, Zr and V, and n is 3 or 4, e.g. [NN-1]TiCh 1a, [NN-1]ZrCh 1b, [NN-1]VC13 1c, [NN-2]TiCh 2a, [NN-2]ZrCh 2b, [NN-2]VC13 2e, [NN-3]TiCh 3a have been investigated to catalyze ethylene polymerization in the presence of methylaluminoxane (MAO). It was noteworthy that polyethylene characteristic of high molecular weight and wide or bimodal molecular weight distribution was formed with moderate to high activities.  相似文献   

20.
[reaction: see text] A series of 2-amino-2-deoxy-D-[1-13C]aldohexoses and their methyl glycosides was prepared with use of a simplified cyanohydrin reduction route. Four d-aldopentosylamines (arabino, lyxo, ribo, xylo) were prepared from the corresponding D-aldopentoses by reaction with NH3(g) in MeOH solvent, isolated in solid form, and characterized by 13C and 1H NMR. Hydrolysis of beta-D-xylopyranosylamine was studied using 13C-labeled substrates to establish optimal solution conditions for cyanohydrin formation. Major hydrolytic intermediates were observed and identified by time-lapse 1D and 2D NMR analyses of reaction mixtures. The aldopentosylamines were subsequently employed in cyanohydrin reduction reactions with K13CN to yield C2-epimeric [1-13C]2-aminosugars, which were separated by chromatography on ion-exchange columns. N-Acetylation and methyl glycosidation followed by chromatography gave pure 2-acetamido-2-deoxy-D-[1-13C]aldohexopyranosides. J(CH) and J(CC) spin-spin coupling constants involving the labeled anomeric carbon were measured and compared to those observed previously in methyl D-[1-13C]aldohexopyranosides. In parallel studies, theoretical J-couplings were calculated in model N-acetylated aldopyranosides using density functional theory (DFT) to predict the effect of OH vs NHCOCH(3) substitution at C2 on J(CH) and J(CC) values in aldopyranosyl rings. The synthetic method was also modified to accommodate (15)N- and (13)C-labeling within the N-acetyl side-chain, and some J-couplings involving 1H, 13C, and 15N atoms in 2-[1,2-13C2;15N]acetamido-2-deoxy-D-[1-13C]glucose were measured and interpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号