首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In a preliminary communication we described a top-down approach to the determination of chemical cross-link location in proteins using Fourier transform mass spectrometry (FT-MS). We have since extended the approach to use a series of homobifunctional cross-linkers with the same reactive functional groups, but different cross-linker arm lengths. Correlating cross-linking data across a series of related linkers allows the distance constraint derived from a cross-link between two reactive side chains to be determined more accurately and increases the confidence in the assignment of the cross-links. In ubiquitin, there are seven lysines with primary amino groups and the amino terminus. Disuccinimidyl suberate (DSS, cross-linker arm length = 11.4 A), disuccinimidyl glutarate (DSG, cross-linker arm length = 7.5 A) and disuccinimidyl tartrate (DST, cross- linker arm length = 5.8 A) are homobifunctional cross-linking reagents that react specifically with primary amines. Using tandem mass spectrometry (MS/MS) on the singly, internally cross-linked precursor ion of ubiquitin, we found cross-links with DSS and DSG between the amino terminus and Lys 6, between Lys 6 and Lys 11, and between Lys 63 and Lys 48. Using disuccinimidyl tartrate (DST), the shortest cross-linker in the series, only the cross-links between the amino terminus and Lys 6, and between Lys 6 and Lys 11 were observed. The observed cross-links are consistent with the crystal structure of ubiquitin, if the lysine side chains and the amino terminus are assumed to have considerable flexibility. In a separate study, we probed the reactivity of the primary amino groups in ubiquitin using the amino acetylating reagent, N-hydroxy succinimidyl acetate (NHSAc), and a top-down approach to localize the acetylated lysine residues. The reactivity order obtained in that study (M1 approximate, equals K6 approximate, equals K48 approximate, equals K63) > K33 > K11 > (K27, K29), shows that the cross-link first formed in ubiquitin by reaction with DSS and DSG occurs between the most reactive residues.  相似文献   

2.
This paper reports the study of backbone cleavages in the collision-induced negative-ion mass spectra of the [M - H](-) anions of some synthetic modifications of the bioactive amphibian peptide citropin 1 (GLFDVIKKVASVIGGL-NH(2)). The peptides chosen for study contain no amino acid residues which could effect facile side-chain cleavage, i.e. Ser (-CH(2)O, side-chain cleavage) and Asp (-H(2)O) are replaced by Ala or Lys. We expected that such peptides should exhibit standard and pronounced peaks due to alpha cleavage ions (and to a lesser extent beta cleavage ions) in their collision-induced negative-ion spectra. This expectation was realised, but the spectra also contained peaks formed by a new series of cleavage anions. These are produced following cyclisation of the C-terminal CONH(-) moiety at carbonyl functions of amide groups along the peptide backbone; effectively transferring the NH of the C-terminal CONH(-) group to other amino acid residues. We have called the product anions of these processes beta' ions, in order to distinguish them from standard beta ions. Some beta' ions also fragment directly to some other beta' ions of smaller mass. The reaction coordinates of alpha,beta and beta' backbone processes have been calculated at the HF/6-31G*//AM1 level theory for simple model systems. The initial cyclisation step of the beta' sequence is barrierless and exothermic. Subsequent steps have a maximum barrier of +40 kcal mol(-1), with the overall reaction being endothermic by some 30 kcal mol(-1) at the level of theory used. These calculations take no account of the complexity of the conformationally flexible peptide system, and it is surprising that each of the two reacting centres can 'find' each other in such a large system.  相似文献   

3.
Catalyzing the covalent modification of aliphatic amino groups, such as the lysine (Lys) side chain, by nucleic acids has been challenging to achieve. Such catalysis will be valuable, for example, for the practical preparation of Lys‐modified proteins. We previously reported the DNA‐catalyzed modification of the tyrosine and serine hydroxy side chains, but Lys modification has been elusive. Herein, we show that increasing the reactivity of the electrophilic reaction partner by using 5′‐phosphorimidazolide (5′‐Imp) rather than 5′‐triphosphate (5′‐ppp) enables the DNA‐catalyzed modification of Lys in a DNA‐anchored peptide substrate. The DNA‐catalyzed reaction of Lys with 5′‐Imp is observed in an architecture in which the nucleophile and electrophile are not preorganized. In contrast, previous efforts showed that catalysis was not observed when Lys and 5′‐ppp were used in a preorganized arrangement. Therefore, substrate reactivity is more important than preorganization in this context. These findings will assist ongoing efforts to identify DNA catalysts for reactions of protein substrates at lysine side chains.  相似文献   

4.
Polymeric chains made of a small protein ubiquitin act as molecular signals regulating a variety of cellular processes controlling essentially all aspects of eukaryotic biology. Uncovering the mechanisms that allow differently linked polyubiquitin chains to serve as distinct molecular signals requires the ability to make these chains with the native connectivity, defined length, linkage composition, and in sufficient quantities. This, however, has been a major impediment in the ubiquitin field. Here, we present a robust, efficient, and widely accessible method for controlled iterative nonenzymatic assembly of polyubiquitin chains using recombinant ubiquitin monomers as the primary building blocks. This method uses silver-mediated condensation reaction between the C-terminal thioester of one ubiquitin and the ε-amine of a specific lysine on the other ubiquitin. We augment the nonenzymatic approaches developed recently by using removable orthogonal amine-protecting groups, Alloc and Boc. The use of bacterially expressed ubiquitins allows cost-effective isotopic enrichment of any individual monomer in the chain. We demonstrate that our method yields completely natural polyubiquitin chains (free of mutations and linked through native isopeptide bonds) of essentially any desired length, linkage composition, and isotopic labeling scheme, and in milligram quantities. Specifically, we successfully made Lys11-linked di-, tri-, and tetra-ubiquitins, Lys33-linked diubiquitin, and a mixed-linkage Lys33,Lys11-linked triubiquitin. We also demonstrate the ability to obtain, by high-resolution NMR, residue-specific information on ubiquitin units at any desired position in such chains. This method opens up essentially endless possibilities for rigorous structural and functional studies of polyubiquitin signals.  相似文献   

5.
This instrument combines the capabilities of ion/ion reactions with ion mobility (IM) and time-of-flight (TOF) measurements for conformation studies and top-down analysis of large biomolecules. Ubiquitin ions from either of two electrospray ionization (ESI) sources are stored in a three dimensional (3D) ion trap (IT) and reacted with negative ions from atmospheric sampling glow discharge ionization (ASGDI). The proton transfer reaction products are then separated by IM and analyzed via a TOF mass analyzer. In this way, ubiquitin +7 ions are converted to lower charge states down to +1; the ions in lower charge states tend to be in compact conformations with cross sections down to ~880 Å2. The duration and magnitude of the ion ejection pulse on the IT exit and the entrance voltage on the IM drift tube can affect the measured distribution of conformers for ubiquitin +7 and +6. Alternatively, protein ions are fragmented by collision-induced dissociation (CID) in the IT, followed by ion/ion reactions to reduce the charge states of the CID product ions, thus simplifying assignment of charge states and fragments using the mobility-resolved tandem mass spectrum. Instrument characteristics and the use of a new ion trap controller and software modifications to control the entire instrument are described.  相似文献   

6.
Modification of ubiquitin, a key cellular regulatory polypeptide of 76 amino acids, to polyubiquitin conjugates by lysine-specific isopeptide linkage at one of its seven lysine residues has been recognized as a central pathway determining its biochemical properties and cellular functions. Structural details and differences of distinct lysine-isopeptidyl ubiquitin conjugates that reflect their different functions and reactivities, however, are only partially understood. Ion mobility spectrometry (IMS) combined with mass spectrometry (MS) has recently emerged as a powerful tool for probing conformations and topology involved in protein interactions by an electric field-driven separation of polypeptide ions through a drift gas. Here we report the conformational characterization and differentiation of Lys63- and Lys48-linked ubiquitin conjugates by IMS–MS. Lys63- and Lys48-linked di-ubiquitin conjugates were prepared by recombinant bacterial expression and by chemical synthesis using a specific chemical ligation strategy, and characterized by high-resolution Fourier transform ion cyclotron resonance mass spectrometry, circular dichroism spectroscopy, and molecular modeling. IMS–MS was found to be an effective tool for the identification of structural differences of ubiquitin complexes in the gas phase. The comparison of collision cross-sections of Lys63- and Lys48-linked di-ubiquitin conjugates showed a more elongated conformation of Lys63-linked di-ubiquitin. In contrast, the Lys48-linked di-ubiquitin conjugate showed a more compact conformation. The IMS-MS results are consistent with published structural data and a comparative molecular modeling study of the Lys63- and Lys48-linked conjugates. The results presented here suggest IMS techniques can provide information that complements MS measurements in differentiating higher-order polyubiquitins and other isomeric protein linkages.  相似文献   

7.
Despite their importance in macromolecular interactions and functions, the dynamics of lysine side-chain amino groups in proteins are not well understood. In this study, we have developed the methodology for the investigations of the dynamics of lysine NH3(+) groups by NMR spectroscopy and computation. By using 1H?15N heteronuclear correlation experiments optimized for 15NH3(+) moieties, we have analyzed the dynamic behavior of individual lysine NH3(+) groups in human ubiquitin at 2 °C and pH 5. We modified the theoretical framework developed previously for CH3 groups and used it to analyze 15N relaxation data for the NH3(+) groups. For six lysine NH3(+) groups out of seven in ubiquitin, we have determined model-free order parameters, correlation times for bond rotation, and reorientation of the symmetry axis occurring on a pico- to nanosecond time scale. From CPMG relaxation dispersion experiment for lysine NH3(+) groups, slower dynamics occurring on a millisecond time scale have also been detected for Lys27. The NH3(+) groups of Lys48, which plays a key role as the linkage site in ubiquitination for proteasomal degradation, was found to be highly mobile with the lowest order parameter among the six NH3(+) groups analyzed by NMR. We compared the experimental order parameters for the lysine NH3(+) groups with those from a 1 μs molecular dynamics simulation in explicit solvent and found good agreement between the two. Furthermore, both the computer simulation and the experimental correlation times for the bond rotations of NH3(+) groups suggest that their hydrogen bonding is highly dynamic with a subnanosecond lifetime. This study demonstrates the utility of combining NMR experiment and simulation for an in-depth characterization of the dynamics of these functionally most important side-chains of ubiquitin.  相似文献   

8.
To further explore the binding chemistry of cisplatin (cis-Pt(NH3)2Cl2) to peptides and also establish mass spectrometry (MS) strategies to quickly assign the platinum-binding sites, a series of peptides with potential cisplatin binding sites (Met(S), His(N), Cys(S), disulfide, carboxyl groups of Asp and Glu, and amine groups of Arg and Lys, were reacted with cisplatin, then analyzed by electron capture dissociation (ECD) in a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS). Radical-mediated side-chain losses from the charge-reduced Pt-binding species (such as CH3S? or CH3SH from Met, SH? from Cys, CO2 from Glu or Asp, and NH2 ? from amine groups) were found to be characteristic indicators for rapid and unambiguous localization of the Pt-binding sites to certain amino acid residues. The method was then successfully applied to interpret the top-down ECD spectrum of an inter-chain Pt-crosslinked insulin dimer, insulin?+?Pt(NH3)2?+?insulin (>10 kDa). In addition, ion mobility MS shows that Pt binds to multiple sites in Substance P, generating multiple conformers, which can be partially localized by collisionally activated dissociation (CAD). Platinum(II) (Pt(II)) was found to coordinate to amine groups of Arg and Lys, but not to disulfide bonds under the conditions used. The coordination of Pt to Arg or Lys appears to arise from the migration of Pt(II) from Met(S) as shown by monitoring the reaction products at different pH values by ECD. No direct binding of cisplatin to amine groups was observed at pH 3?~?10 unless Met residues were present in the sequence, but noncovalent interactions between cisplatin hydrolysis and amination [Pt(NH3)4]2+ products and these peptides were found regardless of pH.
Figure
?  相似文献   

9.
A new hybrid electrospray quadrupole Fourier transform mass spectrometry (FTMS) instrument design is shown and characterized. This instrument involves coupling an electrospray source and mass-resolving quadrupole, ion accumulation, and collision cell linear ion trap system developed by MDS Sciex with a home-built ion guide and ion cyclotron resonance (ICR) cell. The iterative progression of this design is shown. The final design involves a set of hexapole ion guides to transfer the ions from the accumulation/collision trap through the magnetic field gradient and into the cell. These hexapole ion guides are separated by a thin gate valve and two conduction limits to maintain the required <10(-9) mbar vacuum for FTICR. Low-attomole detection limits for a pure peptide are shown, 220 000 resolving power in broadband mode and 820 000 resolving power in narrow-band mode are demonstrated, and mass accuracy in the <2 ppm range is routinely available provided the signal is abundant, cleanly resolved, and internally calibrated. This instrument design provides high experimental flexibility, allowing Q2 CAD, SORI-CAD, IRMPD, and ECD experiments with selected ion accumulation as well as experiments such as nozzle skimmer dissociation. Initial top-down mass spectrometry experiments on a protein is shown using ECD.  相似文献   

10.
Amino acid residue-specific backbone and side-chain dissociations of peptide z ions in MS(3) spectra were elucidated for over 40 pentapeptides with arginine C-terminated sequences of the AAXAR and AAHXR type, nonapeptides of the AAHAAXX"AR and AAHAXAX"AR type, and AAHAAXX"AAR decapeptides. Peptide z(n) ions containing amino acid residues with readily transferrable benzylic or tertiary β-hydrogen atoms (Phe, Tyr, His, Trp, Val) underwent facile backbone cleavages to form dominant z(n-2) or z(n-3) ions. These backbone cleavages are thought to be triggered by a side-chain β-hydrogen atom transfer to the z ion C(α) radical site followed by homolytic dissociation of the adjacent C(α)-CO bond, forming x(n-2) cation-radicals that spontaneously dissociate by loss of HNCO. Amino acid residues that do not have readily transferrable β-hydrogen atoms (Gly, Ala) do not undergo the z(n) → z(n-2) dissociations. The backbone cleavages compete with side-chain dissociations in z ions containing Asp and Asn residues. Side-chain dissociations are thought to be triggered by α-hydrogen atom transfers that activate the C(β)-C(γ) or C(β)-heteroatom bonds for dissociations that dominate the MS(3) spectra of z ions from peptides containing Leu, Cys, Lys, Met, Ser, Arg, Glu, and Gln residues. The Lys, Arg, Gln, and Glu residues also participate in γ-hydrogen atom transfers that trigger other side-chain dissociations.  相似文献   

11.
Five 42-residue polypeptides have been designed to fold into hairpin helix-loop-helix motifs that dimerize to form four-helix bundles, and to serve as protein scaffolds for the elucidation at the molecular level of the principles that control and fine-tune lysine and ornithine reactivities in a protein context. Site-selective control of Lys and Orn reactivity provides a mechanism for addressing directly individual residues and is a prerequisite for the site-selective functionalization of folded proteins. Several lysine and one ornithine residues were introduced on the surface and in the hydrophobic core of the folded motif. The reactivity of each residue was determined by measuring the degree of acylation of the trypsin cleaved fragments by HPLC and mass spectrometry. The most reactive residues were Orn34 and Lys19, both of which were located in d positions in the heptad repeat, and therefore in hydrophobic environments. Upon reaction of the helix-loop-helix dimer KA-I with one equivalent of mono-p-nitrophenyl fumarate, Orn34 was acylated approximately three times more efficiently than Lys19, whereas Lys10 (b position), Lys15 (g position), and Lys33 (c position) remained unmodified. In the sequence KA-I-A(15) Lys15 was replaced by an alanine residue and the selectivity of Orn34 over Lys19 increased to approximately a factor of six, probably because Lys15 had the capacity to reduce the pK(a) value of Lys19 and 85 % of site-selectively monoacylated product was obtained. The pH dependence of the acylation reaction was determined and showed that the pK(a) of the reactive residues were 9.3, more than a pK(a) unit below the magnitude of the corresponding residue in a solvent exposed position. Introducing Lys and Orn residues into a or d positions of the heptad repeat therefore serves as a mechanism of depressing their pK(a) to increase their reactivity site selectively. Extensive NMR and CD spectroscopic analyses showed that the sequences fold according to prediction.  相似文献   

12.
A high pressure matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry (FTMS) ion source was designed and tested. With this design, pressure is pulsed to an estimated 1-10 mbar in the region of the MALDI sample during desorption with the result of significantly decreased fragmentation compared to similar systems operating with pressures of <0.1 mbar. The thermal stabilization of vibrationally excited ions under these conditions is shown with small peptides desorbed from the "hot" matrix alpha-cyano-4-hydroxycinnamic acid, and with the highly labile oxidized beta-chain of insulin. Fragile gangliosides with several sialic acid residues are desorbed under high pressure and remain intact without the typical losses of sialic acid, and a protein standard, ubiquitin (8565.64 Da), is desorbed with minimal dehydration. Under high pressure collisional cooling conditions, non-covalent matrix adduction to the molecular ions becomes prominent, but with the trapped ions in an FT mass spectrometer, the ions can be mildly activated to detach the matrix adducts. The new source, additionally, generates significant levels of the multiply charged ions which are commonly seen in MALDI-TOFMS, but are rarely observed in MALDI-FTMS. This effect is more likely due to the elimination of a mass filtering effect in the previous FTMS ion source than to collisional cooling of the ions.  相似文献   

13.
Primary and secondary amines were acetylated under mild conditions by means of 3-acetyl-1,3-thiazolidine-2-thione [ATT(1)]. The reaction was successfully applied to selective acetylation of a primary amino group of diamines containing a primary and a secondary amino groups or exclusive N-acetylation of amino alcohols.  相似文献   

14.
High-level quantum chemistry calculations have been carried out to investigate beta-scission reactions of alkoxyl radicals located at the alpha-carbon of a peptide backbone. This type of alkoxyl radical may undergo three possible beta-scission reactions, namely C-C beta-scission of the backbone, C-N beta-scission of the backbone, and C-R beta-scission of the side chain. We find that the rates for the C-C beta-scission reactions are all very fast, with rate constants of the order 10(12) s(-1) that are essentially independent of the side chain. The C-N beta-scission reactions are all slow, with rate constants that range from 10(-0.7) to 10(-4.5) s(-1). The rates of the C-R beta-scission reactions depend on the side chain and range from moderately fast (10(7) s(-1)) to very fast (10(12) s(-1)). The rates of the C-R beta-scission reactions correlate well with the relative stabilities of the resultant side-chain product radicals (*R), as reflected in calculated radical stabilization energies (RSEs). The order of stabilities for the side-chain fragment radicals for the natural amino acids is found to be Ala < Glu < Gln approximately Leu approximately Met approximately Lys approximately Arg < Asp approximately Ile approximately Asn approximately Val < Ser approximately Thr approximately Cys < Phe approximately Tyr approximately His approximately Trp. We predict that for side-chain C-R beta-scission reactions to effectively compete with the backbone C-C beta-scission reactions, the side-chain fragment radicals would generally need an RSE greater than approximately 30 kJ mol(-1). Thus, the residues that may lead to competitive side-chain beta-scission reactions are Ser, Thr, Cys, Phe, Tyr, His, and Trp.  相似文献   

15.
Protein identification is routinely accomplished by peptide sequencing using mass spectrometry (MS) after enzymatic digestion. Site-specific chemical modification may improve peptide ionization efficiency or sequence coverage in mass spectrometry. We report herein that amino group of lysine residue in peptides can be selectively modified by reaction with a peroxycarbonate and the resulting lysine peroxycarbamates undergo homolytic fragmentation under conditions of low-energy collision-induced dissociation (CID) in electrospray ionization (ESI) and matrix-assisted laser desorption and ionization (MALDI) MS. Selective modification of lysine residue in peptides by our strategy can induce specific peptide cleavage at or near the lysine site. Studies using deuterated analogues of modified lysine indicate that fragmentation of the modified peptides involves apparent free-radical processes that lead to peptide chain fragmentation and side-chain loss. The formation of a-, c-, or z-types of ions in MS is reminiscent of the proposed free-radical mechanisms in low-energy electron capture dissociation (ECD) processes that may have better sequence coverage than that of the conventional CID method. This site-specific cleavage of peptides by free radical- promoted processes is feasible and such strategies may aid the protein sequencing analysis and have potential applications in top-down proteomics.  相似文献   

16.
The use of a new electrospray qQq Fourier transform ion cyclotron mass spectrometer (qQq-FTICR MS) instrument for biologic applications is described. This qQq-FTICR mass spectrometer was designed for the study of post-translationally modified proteins and for top-down analysis of biologically relevant protein samples. The utility of the instrument for the analysis of phosphorylation, a common and important post-translational modification, was investigated. Phosphorylation was chosen as an example because it is ubiquitous and challenging to analyze. In addition, the use of the instrument for top-down sequencing of proteins was explored since this instrument offers particular advantages to this approach. Top-down sequencing was performed on different proteins, including commercially available proteins and biologically derived samples such as the human E2 ubiquitin conjugating enzyme, UbCH10. A good sequence tag was obtained for the human UbCH10, allowing the unambiguous identification of the protein. The instrument was built with a commercially produced front end: a focusing rf-only quadrupole (Q0), followed by a resolving quadrupole (Q1), and a LINAC quadrupole collision cell (Q2), in combination with an FTICR mass analyzer. It has utility in the analysis of samples found in substoichiometric concentrations, as ions can be isolated in the mass resolving Q1 and accumulated in Q2 before analysis in the ICR cell. The speed and efficacy of the Q2 cooling and fragmentation was demonstrated on an LCMS-compatible time scale, and detection limits for phosphopeptides in the 10 amol/muL range (pM) were demonstrated. The instrument was designed to make several fragmentation methods available, including nozzle-skimmer fragmentation, Q2 collisionally activated dissociation (Q2 CAD), multipole storage assisted dissociation (MSAD), electron capture dissociation (ECD), infrared multiphoton induced dissociation (IRMPD), and sustained off resonance irradiation (SORI) CAD, thus allowing a variety of MS(n) experiments. A particularly useful aspect of the system was the use of Q1 to isolate ions from complex mixtures with narrow windows of isolation less than 1 m/z. These features enable top-down protein analysis experiments as well structural characterization of minor components of complex mixtures.  相似文献   

17.
We report covalent attachment via a thiol ester linkage of 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid or SA) to cysteine-containing protein biomarkers from bacterial cell lysates of E. coli analyzed by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry when using SA as the matrix. Evidence to support this conclusion is the appearance of additional peaks in the MS spectra when using SA, which are absent when using α-cyano-4-hydroxycinnamic acid (HCCA). The additional peaks appear at a mass-to-charge (m/z) ∼208 greater to the m/z of a more abundant protein ion peak. Protein biomarkers were identified by tandem mass spectrometry (MS/MS) using a MALDI time-of-flight/time-of-flight (TOF-TOF) mass spectrometer and top-down proteomics. Three protein biomarkers, HdeA, HdeB, and homeobox or YbgS (each containing two cysteine residues) were identified as having reactivity to SA. Non-cysteine-containing protein biomarkers showed no evidence of reactivity to SA. MS ions and MS/MS fragment ions were consistent with covalent attachment of SA via a thiol ester linkage to the side-chain of cysteine residues. MS/MS of a protein biomarker ion with a covalently attached SA revealed fragment ion peaks suggesting dissociative loss SA. We propose dissociative loss of SA is facilitated by a pentacyclic transition-state followed by proton abstraction of the β-hydrogen of the bound SA by a sulfur lone pair followed by dissociative loss of 3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-ynal. The apparent reactivity of SA to cysteine/disulfide-containing proteins may complicate identification of such proteins, however the apparent differential reactivity of SA and HCCA toward cysteine/disulfide-containing proteins may be exploited for identification of unknown cysteine-containing proteins.  相似文献   

18.
In this work, synthetic peptides were used to determine the fragmentation behavior of ubiquitinated peptides and to find ions diagnostic for peptide ubiquitination. The ubiquitin-calmodulin peptide1 was chosen as the model peptide for naturally occurring ubiquitinated proteins cleaved with endoproteinase gluC. In addition, the fragmentation behavior of model ubiquitinated peptides produced by tryptic digestion was also of great interest since the standard protocols for proteomics-based protein identification use trypsin as the protease. Attachment of ubiquitin to a target protein results in a branched structure, but only ions from the ubiquitin side chain (and the lysine to which it is attached) can be used as diagnostic ions, since fragment ions that contain other amino acids from the parent protein will vary in mass. Characteristic b-type fragment ions from the gluC cleavage of the ubiquitin side chain (designated as b ions) were found which involve only the ubiquitin tail (b2, b3, b4, b5 and b6 ions at m/z 189.06, 302.12, 439.18, 552.30 and 651.30, respectively). Maximum production of these ions occurred at a collision energy of 45 eV in a Q-TOF instrument. Although a non-ubiquitinated peptide may produce isobaric fragment ions, it is unlikely that it can produce these ions in combination. With liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments, ubiquitinated peptides can readily be determined by surveying the reconstructed or extracted ion chromatograms of the diagnostic fragment ions for common peaks. Characteristic ions resulting from tryptic cleavage of the side chain were found in cleavage products with a missed cleavage, resulting in a LRGG- tag instead of a GG- tag. For the LRGG-tagged peptide, diagnostic MS/MS fragment ions (at m/z 270.17 and 384.21) from the ubiquitin tail (b2 and b4, respectively) were found, along with an internal fragment ion (LRGGK-28) at m/z 484.30. These ions should prove useful in precursor-ion scanning experiments for identifying peptides modified by attachment of ubiquitin, and for locating the site of ubiquitin attachment.  相似文献   

19.
We describe a new interface for a prototype quadrupole-quadrupole-time-of-flight (TOF) mass spectrometer (Centaur, Sciex) that allows rapid switching between electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) modes of operation. Instrument performance in both modes is comparable (i.e., resolution approximately 10,000 FWHM, mass accuracy <10 ppm, sensitivity approximately 1 fmol) because the ion source is decoupled from the TOF mass analyzer by extensive gas collisions in the quadrupole stages of the instrument. The capacity to obtain side-by-side high quality ESI and MALDI mass spectra from a single proteolytic mixture greatly facilitates the identification of proteins and elucidation of their primary structures. Improved strategies for protein identification result from this ability to measure spectra using both ionization modes in the same instrument and to perform MS/MS on singly charged as well as multiply charged ions. Examples are provided to demonstrate the utility and performance of the modified instrument.  相似文献   

20.
The reaction between formaldehyde and the side-chain of tryptophan results in a methylol adduct. This methylol adduct formation also occurs during reductive methylation reactions. In the current study, we investigate the fragmentation pattern of peptides with N-terminal dimethylation and methylol adduction at the tryptophan side-chain. Once formed, the methylol group can easily undergo water loss to form an imine. The peptides with imine or methylol adduct on tryptophan exhibit similar MS/MS fragmentation patterns. We observed ions resulting from an intramolecular reaction between the dimethylamino group at the peptide N-terminus or the lysine side-chain and the imine group. This reaction reduces the imine to a methyl group. We also observed the loss of the imine adduct on tryptophan. This reaction is likely to occur through the reaction of an amino or hydroxyl group with the imine adduct followed by subsequent loss of methylenimine or formaldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号