首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel O-butyryl chitosan (OBCS)-grafted polypyrrole (PPy) film was described. The immobilization was accomplished by photocrosslinking the OBCS onto PPy films under ultraviolet light irradiation. The surfaces of OBCS-grafted PPy film were characterized by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and electron spectroscopy for chemical analysis (ESCA). The blood compatibility of the OBCS-grafted PPy film was evaluated by platelet-rich plasma (PRP) contacting experiments and protein adsorption experiments in vitro. These results have demonstrated that the surface with immobilized OBCS shows much less platelet adhesive and fibrinogen adsorption compared to the control surface. The bulk conductivity values of PPy films were measured by a modified four-probe method. The composite films have both good blood compatibility and high electrical conductivity that make them suitable for using as potential biomaterials, such as electrically conducting blood vessel and functionally haemocompatible substrate of biosensor used directly in whole blood.  相似文献   

2.
In order to improve blood compatibility of polyethylene (PE) film, the Pluronics F127 additives in the PE film were then crosslinked to be stably entrapped in the PE matrix. The crosslinking was done by free radicals produced from the decomposition of dicumyl peroxide (DCP) in the film through heating (120 °C). Surface properties of the Pluronics F127 additive-containing PE films were investigated by Fourier transform infrared spectroscopy (FTIR), electron spectroscopy for chemical analysis (ESCA) and water contact angle (WCA) measurements. The blood compatibility of the Pluronics F127 additive-containing films was evaluated by platelet-rich plasma and blood-cell adhesion tests, respectively. And the results were observed by scanning electron microscopy. The blood compatibility of the prepared Pluronics F127 additive-containing film is better than that of blank PE film. These results suggest that the blood compatibility of Pluronics F127 additive-containing films make them suitable biomaterials for some applications.  相似文献   

3.
In this paper, the mechanism of thrombus formation on the surface of polymeric materials and the various approaches of modifying biomaterial surfaces to improve their hemocompatibility are reviewed. Moreover, the blood compatibility of the cellulose membrane grafted with O-butyrylchitosan (OBCS) by using a radiation grafting technique was studied. Surface analysis of grafted cellulose membrane was verified by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and electron spectroscopy for chemical analysis (ESCA), which confirmed that OBCS was successfully grafted onto the cellulose membrane surfaces. Blood compatibility of the grafted cellulose membranes was evaluated by platelet rich plasma (PRP) contacting experiments and protein adsorption experiments using blank cellulose membranes as the control. The blood compatibility of OBCS grafted cellulose membranes is better than that of blank cellulose membranes. These results suggest that the photocrosslinkable chitosan developed here has the potential of serving in blood-contacting applications in medical use.  相似文献   

4.
Immobilization of the anticoagulative or antithrombogenic biomolecule has been considered as one of the important methods to improve the blood compatibility of artificial biomaterials. In this study, a novel immobilization reaction scheme was utilized to incorporate O-butyrylchitosan (OBCS) onto the activated glass surface with an aim to develop an anticoagulative substrate. Activation of the glass surface was carried out by silanization and then OBCS was grafted to the silanized surface via a radiation grafting technique. The OBCS-grafted glass surfaces were characterized by electron spectroscopy for chemical analysis (ESCA) and atomic force microscopy (AFM). The blood compatibility of the OBCS-grafted glass was evaluated by platelet rich plasma (PRP) contacting experiments and protein adsorption experiments in vitro. These results have demonstrated that the surface with immobilized OBCS shows much less platelet adhesive and fibrinogen adsorption compared to the control surface. Therefore, the novel reaction scheme proposed here is very promising for future development of an anticoagulative glass substrate.  相似文献   

5.
Surface modification is an effective way to improve the hemocompatibility and remain bulk properties of biomaterials. Recently, polymer tailed with zwitterions was found having good blood compatibility. In this study, the grafting copolymerization of sulfobetaine onto polyurethane surface was obtained through two steps. In the first step, polyurethane film coupled with vinyl groups was obtained through the reaction between the carboxyl group of acrylic acid (AA) and the NH-urethane group of polyurethane by dicyclohexylcarbodiimide (DCC). In the second step, sulfobetaine was grafted copolymerization on the surface using AIBN as an initiator. The reaction process was monitored with ATR-IR spectra and X-ray photoelectron spectroscopy (XPS) spectra. The wettability of films was investigated by water contact angle measurement. The blood compatibility of the grafted films was evaluated by platelet adhesion in platelet rich plasma (PRP) and protein absorption in bovine fibrinogen (BFG). Low platelet adhesion was observed on the grafted films incubated in PRP for 1 and 3 h, respectively. The protein absorption was reduced on the grafted films after incubated in bovine fibrinogen for 2 h. All of these results revealed that the improved blood compatibility was obtained by grafting copolymerization with zwitterionic monomer of sulfobetaine onto polyurethane film. In addition, introducing vinyl groups onto surface through DCC and AA is a novel method to functionalize polyurethane for further modification.  相似文献   

6.
生物相容性 ,特别是血液相容性是生物医用材料极其重要的性能[1] .提高不凝血性一直是生物材料研究与发展 (R D)的主要内容之一 ,半个多世纪来 ,不凝血材料的R D已取得了很大的发展[2 ] .但还不能满足心血管植入物 (Cardiovascularimplants)及心血管医物 (Cardiovasculardevices)对不凝血性的需要 .Ratner[3 ] 在最近一次的血液相容性问题研讨会上再次强调了不凝血材料研究的紧迫性 .会议的报告也反映了该领域的研究现状 ,并提出了今后要研究的问题等 .目前不凝血性较好的材料仅有聚…  相似文献   

7.
Surface modification of segmented poly(ether urethane) (SPEU) by graft copolymerization with N,N′-dimethyl-N-methacryloyloxyethyl-N-(3-sulfopropyl) ammonium (DMMSA), a zwitterionic sulfobetaine structure, was conducted. A simple two-step procedure for grafting of DMMSA onto the surface of SPEU film was used. The surface was first treated with ozone to introduce active hydroperoxide groups. The active surface was then exposed to the DMMSA solution in the sealed tube. Grafted SPEU film was characterized by ATR–FTIR, XPS and contact angle measurement. ATR–FTIR and XPS investigations confirmed the graft copolymerization. The monomer concentration, copolymerization temperature and time were varied to maximize the efficiency of DMMSA grafting. The equilibrium water content (EWC) and contact angle measurements showed that the hydrophilicity of the film had been greatly improved. The blood compatibility of the grafted films was evaluated by platelet adhesion in platelet rich plasma (PRP), deposits in blood control and protein adsorption in bovine fibrinogen using SPEU film as the control. No platelet adhesion and no thrombus were observed for the grafted films incubated in PRP for 300 min and in blood for 120 min, respectively. The protein adsorption was reduced on the grafted films after incubation in bovine fibrinogen for 120 min. These results proved that improved blood compatibility was obtained by grafting this new zwitterionic sulfobetaine structure monomer onto SPEU film.  相似文献   

8.
This paper dealt with improving the blood compatibility of the rapamycin-eluting stent by incorporating curcumin. The rapamycin- and rapamycin/curcumin-loaded PLGA (poly(d,l-lactic acid-co-glycolic acid)) coatings were fabricated onto the surface of the stainless steel stents using an ultrasonic atomization spray method. The structure of the coating films was characterized by Fourier transform infrared spectroscopy (FTIR). The optical microscopy and scanning electron microscopy (SEM) images of the drug-eluting stents indicated that the surface of all drug-eluting stents was very smooth and uniform, and there were not webbings and "bridges" between struts. There were not any cracks and delaminations on stent surface after expanded by the angioplasty balloon. The in vitro platelet adhesion and activation were investigated by static platelet adhesion test and GMP140 (P-selection), respectively. The clotting time was examined by activated partially prothromplastin time (APTT) test. The fibrinogen adsorption on the drug-loaded PLGA films was evaluated by enzyme-linked immunosorbent assay (ELISA). All obtained data showed that incorporating curcumin in rapamycin-loaded PLGA coating can significantly decrease platelet adhesion and activation, prolong APTT clotting time as well as decrease the fibrinogen adsorption. All results indicated that incorporating curcumin in rapamycin-eluting coating obviously improve the blood compatibility of rapamycin-eluting stents. It was suggested that it may be possible to develop a drug-eluting stent which had the characteristics of not only good anti-proliferation but also improved anticoagulation.  相似文献   

9.
Poly(ethylene terephthalate) (PET) films were treated by argon plasma following by graft copolymerization with acrylic acid (AAc). The obtained PET-surface grafted PAA (PET-g-PAA) was coupled with chitosan (CS) and o-carboxymethylchitosan (OCMCS) molecules, respectively. Their surface physicochemical properties were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle and streaming potential measurements. The PET-g-PAA surface containing carboxylic acid, CS immobilized PET surface containing amino and OCMCS immobilized PET surface containing both carboxylic acid and amino groups, make the PET surface exhibited a hydrophilic character. The blood compatibility was evaluated by platelet contacting experiments and protein adsorption experiments in vitro. The results demonstrate that the PET surface coupling OCMCS shows much less platelet adhesive and fibrinogen adsorption compared to the other surface modified PET films. The anticoagulation of PET-OCMCS is ascribed to the suitable balance of hydrophobicity/hydrophilicity, surface zeta potential and the low adsorption of protein.  相似文献   

10.
Platelet adhesion and protein adsorption on the silicone rubber film grafted with N,N'-dimethyl-N-methacryloyloxyethyl-N-(2-carboxyethyl) ammonium (DMMCA) was studied. The grafting was carried out by means of ozone-induced method and was confirmed by ATR-FTIR and XPS investigations. The grafted films possessed relatively hydrophilic surface revealed by contact angle measurement. The blood compatibility of the grafted film was evaluated in vitro by platelet adhesion in platelet-rich plasma (PRP) and protein absorption in bovine fibrinogen (BFG) using silicone film as the reference. No substantial platelet adhesion was observed for the grafted films incubated in PRP for 60 and 180 min. The protein absorption was also significantly reduced after incubated in bovine fibrinogen for 60 min. Both the results indicated that the blood compatibility of silicone rubber was greatly improved by ozone-induced grafting of carboxybetaine zwitterionic polymer onto its surface.  相似文献   

11.
制备了乳酸-β-苹果酸共聚物,并在此基础上进一步修饰合成了含悬挂羟基(PLMAHE)以及悬挂羧基(PCA-PLA)的聚乳酸共聚物,利用原子力显微镜及环境扫描电镜,观察了聚合物膜的表面形貌以及粘附在聚合物膜上的血小板数量与形态.结果表明含悬挂羟基材料表面粘附血小板时发生聚集并有伪足生成,含悬挂羧基材料表面血小板粘附数量较少且形态正常,有望成为优良的抗凝血材料.  相似文献   

12.
A series of poly(vinyl alcohol)/chitosan (PVA/CTS) hydrogel thin films were prepared via ultraviolet (UV) irradiation, with acrylic acid (AA) monomer added as a crosslinker without the addition of any other photo-initiator. The swelling behaviors, intermolecular chemical bonds, molecular structures, thermal behaviors, degrees of crystallinity, morphologies of the surfaces and internal structure, and their relationship to the AA content were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Poly(acrylic acid) (PAA) and its chemical crosslinks formed in hydrogel films via free-radical reactions were confirmed using FTIR and DSC analyses. The XRD patterns indicated that the degree of crystallinity of the hydrogel films decreased as the PAA content was increased. SEM micrographs showed that a uniform interconnected pore structure was formed through the entire hydrogel structure, and a gradient in the crosslinking density through the film thickness was observed to result from extended irradiation times. The swelling behaviors revealed that the formation of PAA and its crosslinking in the hydrogel thin films improved the pH stability and controlled the degree of swelling while retaining a high swelling rate. The successful formation of chemical crosslinking without any specific photo-initiator improves the natural characteristics of CTS and PVA and imparts the resulting PVA/CTS hydrogel thin films with properties that make them very promising in biomedical applications.  相似文献   

13.
为了考察内皮化材料表面的细胞活性, 在前期工作的基础上, 分别在聚乳酸(PLA)、乳酸-苹果酸共聚物(PLMA), 以及含悬挂羟基或羧基的乳酸-苹果酸共聚物膜(PLMAHE,PLMACA)表面种植人脐静脉内皮细胞(HUVEC), 成功地制备了内皮化表面. 通过测定内皮化材料表面内皮细胞释放的内皮型一氧化氮合酶(eNOS)以及一氧化氮的释放量, 间接考察了内皮细胞的抗凝血活性; 另外, 通过内皮化表面的血小板黏附实验, 直接观察了血小板在内皮细胞上的黏附情况. 实验结果表明, 含羧基材料表面的内皮细胞活性比PLA和PLMAHE的高; 相对其它材料PLMACA能更有效地保留黏附于其表面内皮细胞的活性, 其单位内皮细胞的eNOS以及NO的释放量分别为(41.8±8.1) μmol/104 cells和(0.76±0.16) U/104 cells. 电镜照片(SEM)显示, 各种材料表面的内皮细胞均能有效地减少血小板的黏附与聚集; 在内皮细胞脱落的区域, PLMACA仍能较好地实现其抑制血小板黏附的功能, 有望成为新型血管修复(替代)材料.  相似文献   

14.
The purpose of this study was to evaluate the physical–chemical properties of collagen (CL) and usnic acid/collagen-based (UAC) films, using differential thermal analysis (DTA), thermogravimetry (TG/DTG), infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Both films were prepared by casting process using polyethylene glycol 1500 (PEG 1500) as plasticizer. In the spectrum of UAC, similar bands of the usnic acid are observed, indicating that the polymerization (film formation) did not affect the stability of the drug. Distinctly, DTA curve of UAC did not show an endothermic peak at 201 °C, indicative that the drug was incorporated into the polymeric system. These results were corroborated by the scanning electron microscopy (SEM). The TG/DTG curves of UAC presented a different thermal decomposition profile compared to the individual compounds and CL. These findings suggest the occurrence of molecular dispersion or solubilization of the drug in the collagen film.  相似文献   

15.
Many widely used polymers undergo main chain scission or crosslinking when exposed to radiation. Effects of electron beam irradiation at different doses up to 500?kGy on the biodegradable pullulan polymer films have been investigated by ultraviolet?Cvisible (UV?CVIS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) techniques. UV?CVisible study shows increase of optical absorbance with increase of doses, attributing to the formation some groups or radicals. FTIR and TGA results reveal the processes of both crosslinking and degradation of polymer taking place depending upon the dose of e-beam radiation. The surface morphology of the film is found to be altered by the e-beam radiation as indicated by SEM micrographs.  相似文献   

16.
Silica nanoparticle/mesoporous silica composite films were prepared by direct mixing with mechanical stirring and thermal imidization. The structural morphology was elucidated by scanning electron microscopy and the surface of the film was imaged by atomic force microscopy. The functional groups and desorption process of the films were elucidated by Fourier transform infrared spectroscopy and thermal desorption spectroscopy. The mechanical properties were investigated using a nanoindenter system. The gel matrix and the filler are very compatible because they have similar molecular content. The composite films had a higher mechanical strength than pure porous silica film. Their strength is related to the silica nanoparticle content. The interfacial compatibility, dispersion effect, and interfacial strength also affect the mechanical strength of composite films.  相似文献   

17.
酸性黄25插层水滑石薄膜的制备及其性能研究   总被引:2,自引:2,他引:0  
采用原位生长法在铝片基底表面制备了ZnAl-NO3-LDHs水滑石薄膜,以其为前驱体,在弱酸性条件下通过离子交换反应将酸性黄25阴离子插层至ZnAl-LDHs/Al薄膜层间,制备了酸性黄25插层水滑石薄膜,并采用XRD、SEM、FTIR、TG-DTA、UV-Vis和色差计等手段对薄膜进行了表征。XRD和FTIR表征结果表明,酸性黄25阴离子成功地插层到了水滑石薄膜层间,ZnAl-LDHs的层间距由0.87 nm增加到2.96 nm,NO3-阴离子在1 384 cm-1处的特征吸收峰消失,同时出现了酸性黄25阴离子的特征吸收峰。SEM照片显示,水滑石晶片主要以c轴平行于铝片基底生长。TG-DTA分析、UV-Vis分析、色差分析和紫外光老化结果表明,插层后酸性黄25阴离子的耐热性和耐光性均得到了提高。  相似文献   

18.
The surface of poly (ethylene-co-tetrafluoroethylene) (PETFE) strip was grafted by acrylic acid (AAc) and methyl methacrylate (MMA) onto PETFE skeleton to improve the blood compatibility and reduce thrombogenicity for prosthesis. The grafting process was carried out via γ-rays technique as initiator for addition reaction. The optimal conditions were achieved by investigating the effect of different parameters during the grafting process such as exposure to irradiation dose, comonomer concentration, comonomer composition, and solvent. The surface microstructure and composition of copoly (AAc/MMA)-grafted-PETFE surface were characterized by Fourier transform infrared spectroscopy (FTIR), CHNS/O elemental analyzer, scanning electron microscopy (SEM), and electron spectroscopy for chemical analysis (ESCA). Further, heparin was introduced onto the grafted PETFE strip surface. The blood compatibility of modified strip was investigated by the determination of platelet adhesion and thrombus formation. The results indicate that the heparinized copoly (AAc/MMA)-grafted-PETFE sample is a good candidate for manufacturing the prosthetic cardiac valves.  相似文献   

19.
Absorbent hydrolyzed starch-g-PAN (HSPAN)/polyvinylalcohol (PVA) blend films crosslinked with epichlorohydrin (ECH) were prepared to overcome the phase separation and improve the mechanical properties of blend films. The absorbency of HSPAN/PVA blend films decreased with PVA contents due to the reduction of HSPAN contents which is known to play a major role in absorbing ability of the film. And also the absorbency decreased with the ECH contents due to the crosslinking reaction. As far as the solubility is concerned, it increased with PVA contents which is water soluble. But because of the crosslinking reaction between HSPAN and PVA by ECH, the solubility decreased with ECH contents. In the mechanical properties, the strength as well as the strain at break of the HSPAN/PVA blend films were improved very much if compared with HSPAN film, and those mechanical properties were improved even more by the reaction with ECH. The DSC thermograms of HSPAN films showed two major endothermic peaks at 32 and 128 °C, while those of PVA film showed two major endothermic peaks at 49 and 190 °C. In the non-crosslinked blend films, each four endothermic peak was apparent. But as the ECH content increased, both peaks at 128 and 190 °C disappeared and a new peak appeared at the intermediate temperature. In other words, the compatibility of blend films was increased by the reaction with ECH. Also, from the results of TGA, it was confirmed that the thermal degradation of blend films was decelerated by the crosslinking reaction.  相似文献   

20.
聚丙烯表面接枝改性络合金的研究   总被引:1,自引:1,他引:0  
探索了一种通过聚丙烯(PP)改性来络合金金属的新途径.首先在PP膜上经紫外光引发实施丙烯酸的接枝聚合反应,得到表面带—COOH基团的改性PP膜;再用负离子开环聚合的方法在改性后的PP膜上接枝尼龙6.上述处理后的膜表面含有大量O、N的功能基团,故可将此膜用于对溶液中金的络合.利用ATR、SEM、XPS等技术对改性及络合进行了表征.实验结果表明,此方法制备的PP膜对金的络合效果明显.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号