共查询到20条相似文献,搜索用时 15 毫秒
1.
《Annals of Physics》1987,173(2):462-492
The gauge invariant relativistic quantum equations of motion for the fermion and photon Wigner operators are derived from QED. In the mean field (Hartree) approximation, we extract the generalized quantum Vlasov and mass-shell constraint equations for fermions. In addition, a complete spinor decomposition is performed. A systematic method for computing quantum corrections to all orders in h is developed. First order quantum (spin) corrections are computed explicitly. Finally, the relations between gauge dependent and independent definitions of the photon Wigner function and their corresponding transport equations are discussed. 相似文献
2.
The control of transport due to electrostatic turbulence is investigated using test-particle simulations. We show that a barrier for the transport, that is, a region where transport is reduced, can be generated through the randomization of phases of the turbulent field. This corresponds to the annihilation of coherent structures which are present at all scales, without actually suppressing turbulence. When the barrier is active, a flux of particles towards the center of the simulation box is present inside the region where the barrier is located. 相似文献
3.
Hogan MJ Clayton CE Huang C Muggli P Wang S Blue BE Walz D Marsh KA O'Connell CL Lee S Iverson R Decker FJ Raimondi P Mori WB Katsouleas TC Joshi C Siemann RH 《Physical review letters》2003,90(20):205002
We report on the first study of the dynamic transverse forces imparted to an ultrarelativistic positron beam by a long plasma in the underdense regime. Focusing of the 28.5 GeV beam is observed from time-resolved beam profiles after the 1.4 m plasma. The strength of the imparted force varies along the approximately 12 ps full length of the bunch as well as with plasma density. Computer simulations substantiate the longitudinal aberration seen in the data and reveal mechanisms for emittance degradation. 相似文献
4.
The renormalization-group approach is applied to derive an exact solution to the self-consistent Vlasov kinetic equations for plasma particles in the quasineutral approximation. The solutions obtained describe three-dimensional adiabatic expansion of a plasma bunch with arbitrary initial velocity distributions of the electrons and ions. The solution found is illustrated by the examples on ion acceleration in a plasma with hot electrons and in a plasma with light impurity ions. 相似文献
5.
空气电弧等离子体的物性参数为空气电弧放电过程的仿真提供了可靠的微观理论基础和参数输入. 假定体系处于局域热力学平衡态, 基于Chapman-Enskog理论, 采用Sonine多项式三级展开(对黏滞系数采用二级展开) 得到的输运参数表达式, 数值计算得到了不同气压条件下(0.1 atm-20 atm, 1 atm = 1.01325×105 Pa)、 不同温度范围内(300-30000 K) 空气电弧等离子体的输运参数(扩散系数、黏滞系数、热导率、电导率). 与以往的理论研究相比, 最新的相互作用势和碰撞截面研究成果被应用到涉及粒子的碰撞积分计算中, 提高了输运参数计算结果的精度和可靠性. 相似文献
6.
7.
Garbet X Garzotti L Mantica P Nordman H Valovic M Weisen H Angioni C 《Physical review letters》2003,91(3):035001
Particle transport in magnetized plasmas is investigated with a fluid model of drift wave turbulence. An analytical calculation shows that magnetic field curvature and thermodiffusion drive an anomalous pinch. The curvature driven pinch velocity is consistent with the prediction of turbulence equipartition theory. The thermodiffusion flux is found to be directed inward for a small ratio of electron to ion pressure gradient, and it reverses its sign when increasing this ratio. Numerical simulations confirm that a turbulent particle pinch exists. It is mainly driven by curvature for equal ion and electron heat sources. The sign and relative weights of the curvature and thermodiffusion pinches are consistent with the analytical calculation. 相似文献
8.
A. D’Angola G. Colonna A. Bonomo D. Bruno A. Laricchiuta M. Capitelli 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2012,66(8):1-6
In this research, having applied the modeling of D/3He fuel burning, the isentropic parameter and entropy are studied. It is shown that the Fermi degeneracy plays an important role in reducing the pressure, energy driver and the fractional burn-up. Based on recent progresses in the laser particle accelerators?? research, we have examined the ignition of a D/3He fuel to achieve the gains of order 58. The obtained results show that the energy required to compress a D/3He fuel with a density of 3.9 × 104 g/cm3, is 3.3 × 107 J/g. With the confinement parameter, 80 g/cm2 and a two times reduction of the isentropic parameter, the increased rate of the target gain is 31%. 相似文献
9.
10.
11.
Del-Castillo-Negrete D 《Chaos (Woodbury, N.Y.)》2000,10(1):75-88
Self-consistent chaotic transport is the transport of a field F by a velocity field v according to an advection-diffusion equation in which there is a dynamical constrain between the two fields, i.e., O(F,v)=0 where O is an integral or differential operator, and the Lagrangian trajectories of fluid particles exhibit sensitive dependence on initial conditions. In this paper we study self-consistent chaotic transport in two-dimensional incompressible shear flows. In this problem F is the vorticity zeta, the corresponding advection-diffusion equation is the vorticity equation, and the self-consistent constrain is the vorticity-velocity coupling z nabla xv=zeta. To study this problem we consider three self-consistent models of intermediate complexity between the simple but limited kinematic chaotic advection models and the approach based on the direct numerical simulation of the Navier-Stokes equation. The first two models, the vorticity defect model and the single wave model, are constructed by successive simplifications of the vorticity-velocity coupling. The third model is an area preserving self-consistent map obtained from a space-time discretization of the single wave model. From the dynamical systems perspective these models are useful because they provide relatively simple self-consistent Hamiltonians (streamfunctions) for the Lagrangian advection problem. Numerical simulations show that the models capture the basic phenomenology of shear flow instability, vortex formation and relaxation typically observed in direct numerical simulations of the Navier-Stokes equation. Self-consistent chaotic transport in electron plasmas in the context of kinetic theory is also discussed. In this case F is the electron distribution function in phase space, the corresponding advection equation is the Vlasov equation and the self-consistent constrain is the Poisson equation. This problem is closely related to the vorticity problem. In particular, the vorticity defect model is analogous to the Vlasov-Poisson model and the single wave model and the self-consistent map apply equally to both plasmas and fluids. Also, the single wave model is analogous to models used in the study of globally coupled oscillator systems. (c) 2000 American Institute of Physics. 相似文献
12.
Turbulent color fields, which can arise in the early and late stages of relativistic heavy ion collisions, may contribute significantly to the transport processes in the matter created in these collisions. We review the theory of these anomalous transport processes and discuss their possible phenomenology in the glasma and quasistationary expanding quark–gluon plasma. 相似文献
13.
14.
15.
García J Giruzzi G Artaud JF Basiuk V Decker J Imbeaux F Peysson Y Schneider M 《Physical review letters》2008,100(25):255004
Burning tokamak plasmas with internal transport barriers are investigated by means of integrated modeling simulations. The barrier sustainment in steady state, differently from the barrier formation process, is found to be characterized by a critical behavior, and the critical number of the phase transition is determined. Beyond a power threshold, alignment of self-generated and noninductively driven currents occurs and steady state becomes possible. This concept is applied to simulate a steady-state scenario within the specifications of the International Thermonuclear Experimental Reactor. 相似文献
16.
17.
18.
A new asymmetry-induced transport mechanism in pure electron plasmas is shown to be proportional to the damping rate of the corresponding trapped-particle mode, with simple scalings for all other parameters. This transport occurs when axial particle trapping exists due to variations in the electric or magnetic confinement fields. This new transport is strong for even weak unintentional trapping (deltaB/B approximately 10(-3)), and may be prevalent in transport experiments with magnetic or electrostatic theta asymmetries. 相似文献
19.
Two-dimensional fluid simulations of interchange turbulence for geometry and parameters relevant for the scrape-off layer of magnetized plasmas are presented. The computations, which have distinct plasma production and loss regions, reveal bursty ejection of particles and heat from the bulk plasma in the form of blobs. These structures propagate far into the scrape-off layer where they are dissipated due to transport along open magnetic field lines. From single-point recordings it is shown that the blobs have asymmetric conditional wave forms and lead to positively skewed and flattened probability distribution functions. The radial propagation velocity may reach one-tenth of the sound speed. These results are in excellent agreement with recent experimental measurements. 相似文献
20.
Non-equilibrium properties of dielectric crystals are described using a Green function approach which represents transport phenomena by correlation functions of the equilibrium system. The equation which is equivalent to a Boltzmann equation for phonons is the integral equation for the vertex part corrections. Including all irreducible diagrams quadratic in the cubic and linear in the quartic anharmonicities the vertex part equation is reduced to a form which could be used as a starting point for numerical studies of microscopic models. The vertex part is also used to express the space and time variation of the phonon density and the frequency change of the phonons in response to an external displacement field. We also relate the integral equation for the vertex part to a form of the transport equation which is used in Landau's theory of quantum liquids. 相似文献