首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of the thermal decomposition of solid complexes of the type Ni(NCS)2L2 (L=pyridine,β-picoline and quinoline), of pseudooctahedral configuration, were studied by using isothermal methods, on the basis of losses of weight, in the temperature range 90–191?. The most suitable reaction order for all the complexes under investigation was found to ben=2/3, i.e. the total decomposition rate is determined by the chemical process proper. The calculated values ofE a(in kcal · mole?1) decrease in the following order: Ni(NCS)2py2 (29.4)>Ni(NCS)2(β-pic)2 (27.6)>Ni(NCS)2Q2 (24.3). With increasing volume of the ligand L the reaction rate also increases, and this suggests that the reaction proceeds by dissociative activation. For all the investigated complexes it was found that δH>E A; this may be explained by a several-step mechanism and the complex Ni(NCS)2L is then considered an intermediate.  相似文献   

2.
The decomposition heats (ΔH) for complexes of the type Ni(NCS)2L2 were studied by means of a differential scanning calorimeter. From the decreasing values ofΔH the following order has been established:a) for pseudooctahedral complexes: py >β-pic > > Q; andb) for square-planar complexes: 2,6-lut > Q >α-pic. The results obtained are compared with the data from the TG, DTG, and DTA curves.  相似文献   

3.
The thermal decompositions of solid complexes of the type Ni(NCS)2L2 (L = pyridine,α-picoline,β-picoline, 2,6-lutidine, and quinoline) were studied by means of the derivatograph. It was found that the decompositions of complexes with pyridine,α-picoline, 2,6-lutidine, and quinoline (the pseudo-octahedral complex) are onestep processes, and those of complexes withβ-picoline and quinoline (the squareplanar complex) consist of two steps. Diffuse reflectance spectra were recorded to elucidate the structures of the decomposition intermediates. The reasons for the different stoichiometries of decomposition for complexes of the same type are discussed.  相似文献   

4.
The Stoichiometry of thermal decomposition was studied for the following compounds: Ni(NCS)2(pip)4 (I), (pip=piperidine), Ni(NCS)2(pip)2py·H2O (II), (py=piridine), Ni(NCS)2(4-Mepip)3 (III), Ni(NCS)2(3-Mepip)3 (IV) and Ni(NCS)2(3.5-Me2pip)3 (V). In complexes I, II, III and IV the loss of the volatile ligands (on the TG curve to 300 °C) occurs in three steps and in complex V in two steps. The loss of the last molecules of volatile ligands is accompanied by the decomposition of NCS groups. Spectral data and magnetic moment values for the initial complexes I and II (together with the defined intermediates) indicated pseudooctahedral configuration while pentacoordination for complexes III, IV and V. Structural changes of the complexes studied in thermal decomposition reactions are discussed.  相似文献   

5.
[Co(p-toluidine)2(NCS)2] (I), [Co(m-toluidine)2(NCS)2] (II) and [Co(aniline)2(NCS)2] (III) have been synthesized. Kinetic parameters n, E and Z (apparent reaction order, activation energy and pre-exponential factor) have been derived from the TG curves recorded under 12 different working conditions. The influence of the sample weight (mo) and of the heating rate (q) upon the kinetic parameters as well as upon the decomposition temperature and the amount of amine liberated in the first decomposition stage are discussed. Mean values of the activation energy and of the decomposition temperature are discussed in terms of the Co—amine bond strength and molecular structure based on IR evidence.  相似文献   

6.
The Stoichiometry of thermal decomposition was studied for the following compounds: Ni(NCS)2(2-Mepy)2 (I), (Me=methyl, py=pyridine), Ni(NCS)2(2-Etpy)2 (II) (Et=ethyl), Ni(NCS)2(2-Clpy)2 (III), Ni(NCS)2(2-Brpy)2 (IV), Ni(NCS)2(2-NH2py)2 (V), Ni((NCS)2(2-NH2py)2·3/4 (C2H5)2O (VI). The release of volatile ligands 2-Rpy is a one-step process for complexes I, II, III and IV, while for V and VI it is a two-step process, Ni(NCS)2(2-NH2py)1 (VII) being formed as an intermediate complex. It was found that complexes I and II are square-planar; the others exhibited pseudo-octahedral geometry. The differences in stereochemistry of the above complexes are explained by the different electronic properties of 2-Rpy.  相似文献   

7.
Three Ni(II) complexes of cresol-based Schiff-base ligands, namely [Ni2(L1)(NCS)3(H2O)2], (1) [Ni2(L2)(CH3COO)(NCS)2(H2O)] (2) and [Ni2(L3)(NCS)3] (3), (where L1 = 2,6-bis(N-ethylpyrrolidineiminomethyl)-4-methylphenolato, L2 = 2,6-bis(N-ethylpiperidineiminomethyl)-4-methylphenolato and L3 = 2,6-bis{N-ethyl-N-(3-hydroxypropyl iminomethyl)}-4-methylphenolato), have been synthesized and structurally characterized by X-ray single-crystal diffraction in addition to routine physicochemical techniques. Density functional theory calculations have been performed to understand the nature of the electronic spectra of the complexes. Complexes 1?C3 when reacted with 4-nitrophenyl phosphate in 50:50 acetonitrile?Cwater medium promote the cleavage of the O?CP bond to form p-nitrophenol and smoothly convert 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ) either in MeOH or in MeCN medium. Phosphatase- and catecholase-like activities were monitored by UV?Cvis spectrophotometry and the Michaelis?CMenten equation was applied to rationalize all the kinetic parameters. Upon treatment with urea, complexes 1 and 2 give rise to [Ni2(L1)(NCS)2(NCO)(H2O)2] (1??) and [Ni2(L2)(CH3COO)(NCO)(NCS)(H2O)] (2??) derivatives, respectively, whereas 3 remains unaltered under same reaction conditions.  相似文献   

8.
[Ni(NaiR)2(X)2] (X = N3 (3, 4) and NCS (5, 6) complexes are synthesized from the reaction of Ni(ClO4)2 · 6H2O with 1-alkyl-2-(naphthyl-α/β-azo)imidazole (α/β-NaiR) and sodium azide (NaN3) or ammonium thiocyanate (NH4NCS) (1:2:2 molar ratio) in methanol solution. The complexes are characterized by elemental, spectroscopic and magnetic study. The distorted octahedral structure has been confirmed by single crystal X-ray diffraction study of [Ni(β-NaiEt)2(NCS)2] (6b). Cyclic voltammogram exhibits quasireversible oxidation response at 0.3–0.4 V which is corresponding to Ni(III)/Ni(II) couple along with ligand reductions at negative potential to SCE reference electrode.  相似文献   

9.
Isothermal TG and DSC measurements were used to study the effect of the pyridine substituent (3-R) on the kinetics and enthalpy change in the thermal decomposition of Ni(NCS)2(3-R-py)4 complexes.The found activation energies (E) of the interface advance decreased with the increase in volume of the substituent, allowing the assumption of a dissociative activation mechanism in the thermal decomposition reaction.The relations between (E) and H and the occurrence of the kinetic compensation effect InA=f(E) are discussed.Part XX in the series Heterogeneous reactions of solid Ni(II) complexes.  相似文献   

10.
The syntheses, crystal structures and magnetic properties of the new bimetallic compounds {CuLα[Ni(NCS)4(H2O)2]} (1) and {CuLα[Mn(NCS)4(H2O)2]} (2), where L = N-dl-5,12-dimethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene, are reported. Both structures consist of well-separated and magnetically equivalent layers which are composed of thiocyanate-bridged Cu(II)–Mn(II) or Cu(II)–Ni(II) binuclear units and create infinite polymeric zig-zag-like chains in the crystal lattices. The [Ni(NCS)4(H2O)2] and [Mn(NCS)4(H2O)2] molecular fragments have a distorted octahedral symmetry. The geometry of the Cu(II) unit is octahedral with the apical positions occupied by bridging thiocyanate ligands and the basal ones by four nitrogen atoms from the macrocyclic ring. The shortest intramolecular M–M distances are: 6.342 Å (Cu–Ni) and 6.421 Å (Cu–Mn). Magnetic susceptibility and magnetization measurements for the examined compounds have been carried out over the range 1.8–300 K. The data suggest antiferromagnetic interactions through the thiocyanate bridge. Finally, the magnitudes of the Cu(II)–M(II) interactions (M = Ni and Mn) have been compared and qualitatively rationalised.  相似文献   

11.
Heterogeneous Reactions of Solid Nickel(II) Complexes. XXI. Thermal Decomposition and Sterochemistry of Thiocyanato-Nickel(II) Complexes with Pyridine N-Oxide and Methylsubstituted Pyridine N-Oxides The thermal decomposition was studied for the complexes: Ni(NCS)2(pyNO)3 · H2O (I), (pyNO = pyridine N-oxide), Ni(NCS)2(2-MepyNO)3 (II) Me = Methyl, Ni(NCS)2(3-MepyNO)2 · C2H5OH (III) and Ni(NCS)2(4-MepyNO)2 · H2O (IV). On heating the solvent molecules bonded escape and then the decomposition of heterocyclic ligands sets in. The spectral and magnetic data indicate a pseudooctahedral configuration of the starting complexes as also of Ni(NCS)2(pyNO)3 (V), Ni(NCS)2(3-MepyNO)2 (VI) and Ni(NCS)2(4-MepyNO)2 (VII), i. e. of the initial complexes without the solvent molecules. For complexes of the type of [Ni(NCS)2L3] · xH2O (L = pyNO, x = 0, 1; L = 2-MepyNO and x = 0) a dimeric structure is assumed, while for those of the type of [Ni(NCS)2L2] · xH2O (C2H5OH) (L = 3-MepyNO and 4-MepyNO, x = 0 or 1) a polymeric structure is supposed.  相似文献   

12.
The synthesis, crystal structures, electrochemical, and magnetic properties of a linear pentanuclear Ni5 compound derived from an oligo-α-pyridylamino ligand, [Ni5(μ-dmpdda)4(NCS)2] [dmpdda-H2 = N,N′-di(4-methylpyridin-2-yl)pyridine-2,6-diamine], are reported. Ni5(μ-dmpdda)4(NCS)2 involve a Ni5 linear chain unit with all of the Ni–Ni–Ni angles being nearly 180°, terminated by two axial ligands. The pentanuclear linear metal chain is helically wrapped by four synsynsynsyn type dmpdda2? ligands. There are two types of Ni–Ni distances in this complex. Terminal Ni–Ni distances bonded with the axial ligand are longer (2.377 Å); the inner Ni–Ni distances are short at 2.2968 Å. Terminal Ni(II) ions bonded with the axial ligands are square-pyramidal (NiN4NCS) with long Ni–N bonds (2.092 Å), consistent with a high-spin Ni(II) configuration. The inner three Ni(II) ions have short Ni–N (1.901–1.925 Å) bond distances, consistent with a square planar (NiN4), diamagnetic arrangement of a low-spin Ni(II) configuration. This compound exhibits magnetic behavior similar to [Ni5(μ-tpda)4(NCS)2], indicating an antiferromagnetic interaction of two terminal high-spin Ni(II) ions.  相似文献   

13.
14.
Reaction of M(SCN)2 (M = Mn, Fe, Ni) with pyridine (pyr) in aqueous solution at room temperature leads to the formation of the literature known pyridine-rich 1:4 compounds of composition [M(SCN)2(pyridine)4] (M = Mn (1-Mn), Fe (1-Fe), Ni (1-Ni)) reported recently. On heating, the 1:4 compounds decompose into their corresponding pyridine-deficient 1:2 compounds of composition [M(SCN)2(pyridine)2]n (M = Mn (2-Mn), Fe (2-Fe), Ni (2-Ni)) which decompose on further heating. In the crystal structure of the pyridine-deficient 1:2 compounds the metal cations are coordinated by four N-atoms of two pyridine ligands and two N-bonded thiocyanato anions, each in mutually trans orientation, and by two S-atoms of two adjacent thiocyanato anions in a slightly distorted octahedral geometry. The thiocyanato anions bridge the metal cations into one-dimensional (1D) polymeric chains. IR spectroscopic investigations on the pyridine-deficient 1:2 compounds are in agreement with the presence of μ-1,3 bridging thiocyanato anions. Magnetic measurements of the pyridine-rich 1:4 compounds show only Curie-Weiss paramagnetism whereas for the pyridine-deficient 1:2 compounds an antiferromagnetic ordering for [Mn(NCS)2(pyridine)2]n (2-Mn) and metamagnetic behavior for [Ni(NCS)2(pyridine)2]n (2-Ni) is found. For [Cu(NCS)2(pyridine)2]n (2-Cu) Curie-Weiss paramagnetic behavior is observed. [Fe(NCS)2(pyridine)2]n (2-Fe) shows metamagnetic behavior, which was already investigated but remeasured for a more detailed characterization.  相似文献   

15.
The investigation of the inhibitory activity on the Ca,Mg-dependent ATP-ase substrate of some Cu(II) and Ni(II) complexes with polyamines and imidazole derivatives is reported. These results show that the Cu(II) complexes have high inhibitorial effect with the exception of the following very stable compounds: square planar [Cu(N-PropIm)2(NCS)2], distorted octahedral [Cu(bipy)2(NCS)2] and five coordinate [Cu(Me6tren)(NCS)] (SCN). The Ni(II) derivatives present a medium inhibitorial activity except to the stable tetrahedral [Ni(N-PropIm)2(NCS)2], hexacoordinate [Ni(dpt)(tn)(NCS)] (SCN) and fivecoordinate [Ni(dpt)(tn)]Br2 and [Ni(Me6tren)(NCS)] (SCN). An explanation of these conclusions is reported.  相似文献   

16.
The infrared spectra (500–140 cm?1) of the complexes [M(pyridine)n(NCS)2] (n = 2, M = Mn, Co, Ni, Cu, or Zn; n = 4, M = Mn, Fe, Co, or Ni) are discussed. The v/M-pyridine and v/M-NCS bands are assigned by observing the band shifts induced by isotopic labelling of the coordinated pyridine and isothiocyanate, by comparing the spectra with those of the [M(pyridine)2Cl2] complexes and from symmetry considerations based on their known structures. The two types of metal-ligand stretching bands occur within a rather narrow frequency range and there is evidence of some vibrational coupling between these two modes. Some earlier assignments of vM-pyridine bands require revision. The spectra of the yellow [Fe(py)4(NCS)2] complex and its violet oxidation product suggest that the oxidation reaction involves the transformation of trans-[Fe(py)4(NCS)2] into cis-[Fe(py)3(NCS)3]  相似文献   

17.
The stoichiometry of thermal decomposition of the complexes Ni(NCS)2(fpy)4 (I), Ni(NCS)2(bfpy)4 (II) and Ni(NCS)2(CF3Phfpy)4 (III) (where fpy=furopyridine, bfpy=benzo-[2,3]furo[3,2-c]pyridine, CF3Phfpy=2-(3-fluoromethylphenyl) furo[3,2-c]pyridine) have been investigated in nitrogen atmosphere from room temperature to 500°C by means of TG and DTG. The results revealed that release of the heterocyclic ligands occurs in two steps. IR data suggested that fpy, bfpy and CF3Phfpy ligands were coordinated to Ni(II) through the N atom of the respective heterocyclic rings and same is the case with the anionic NCS group.  相似文献   

18.
Kinetics of two successive thermal decomposition reaction steps of cationic ion exchange resins and oxidation of the first thermal decomposition residue were investigated using a non-isothermal thermogravimetric analysis. Reaction mechanisms and kinetic parameters for three different reaction steps, which were identified from a FTIR gas analysis, were established from an analysis of TG analysis data using an isoconversional method and a master-plot method. Primary thermal dissociation of SO3H+ from divinylbenzene copolymer was well described by an Avrami–Erofeev type reaction (n = 2, g(α) = [?ln(1 ? α)]1/2]), and its activation energy was determined to be 46.8 ± 2.8 kJ mol?1. Thermal decomposition of remaining polymeric materials at temperatures above 400 °C was described by one-dimensional diffusion (g(α) = α 2), and its activation energy was determined to be 49.1 ± 3.1 kJ mol?1. The oxidation of remaining polymeric materials after thermal dissociation of SO3H+ was described by a phase boundary reaction (contracting volume, g(α) = 1?(1 ? α)1/3). The activation energy and the order of oxygen power dependency were determined to be 101.3 ± 13.4 and 1.05 ± 0.17 kJ mol?1, respectively.  相似文献   

19.
The theory of Borchardt and Daniels for the determination from the DTA curve of the fraction decomposed (α) is used. The probable mechanism, activation energy (E) and frequency factor (Z) can be found by the trial and error method from the plot ofα vs.T for a decomposition reaction which can be expressed by the equation $$\log g(\alpha ) = \log p(E/RT) + \frac{{ZE}}{{Rq}}$$ The use of tables of log g(α) for different mechanisms, and plots of the function logp(E/RT α) vs. temperature for different activation energies is described. The influence is shown of the mechanism of the process, activation energy, frequency factor and heating rate (q) on the shape of the DTA curve. The kinetic data for the decomposition of several solids obtained by the described method are in good agreement with those obtained from literature sources.  相似文献   

20.
One isomer, LC of the isomeric Me8[14]anes, LA, LB and LC; on reaction with Ni(NCS)2 produces a six coordinate octahedral diisothiocyanato complex, [NiLC(NCS)2]. This complex undergoes axial substitution reactions with the small ligands to yield corresponding monosubstituted derivatives having general formula [NiLC(NCS)X] whereas X = Cl, Br, I, NO2 or NO3. The complexes have been characterized on the basis of analytical, spectroscopic, magnetic and conductance data. The structure of [NiLC(NCS)2] (triclinic, space group P?1, α = 8.0421(17) Å, β = 8.9085(18) Å, χ = 9.687(2) Å, α = 67.561(3) Å, β = 82,896(4) Å, ζ = 598.7(2) Å3, = 2, Dc = 1.352 mg/m3, μ(Mo ) = 1.003 mm?1) was confirmed by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号