首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The isospin and density dependent effective pairing interaction is revisited by fitting the neutron gaps from the microscopic calculations for the neutron matter and the symmetric nuclear matter.The neutron pairing gaps for 1S0 channel for asymmetric nuclear matter are obtained from the BCS gap equation with a realistic bare nucleon-nucleon interaction in the Skyrme mean field.It is shown that the neutron gaps obtained from the new effective pairing interaction for the asymmetric nuclear matter are much imp...  相似文献   

2.
We discuss neutron matter calculations based on chiral effective field theory interactions and their predictions for the symmetry energy, the neutron skin of 208Pb , and for the radius of neutron stars.  相似文献   

3.
4.
We report variational calculations of the equation of state of hot and cold, nuclear and neutron matter. The calculations cover a wide density range of interest in heavy-ion collisions and astrophysics. The “hot” calculations are limited to temperatures less than 20 MeV. A realistic nuclear hamiltonian that contains two- and three-nucleon interactions and fits the nucléon-nucléon scattering, as well as nuclear matter data, is used. Neutron star structure calculations are reported and their sensitivity to the three-neutron interactipn is examined. The liquid-vapor phase equilibrium, as well as the behavior of the effective mass in nuclear matter is discussed.  相似文献   

5.
The Dirac structure of the nucleon self-energy in symmetric nuclear matter as well as neutron matter is derived from a realistic meson exchange model for the nucleon-nucleon (NN) interaction. It is demonstrated that the effects of correlations on the effective NN interaction in the nuclear medium can be parameterized by means of an effective meson exchange. This analysis leads to a very intuitive interpretation of correlation effects and also provides an efficient parametrization of an effective interaction to be used in relativistic structure calculations for finite nuclei. Received: 29 January 2001 / Accepted: 5 May 2001  相似文献   

6.
7.
We calculate the equation of state of a Fermi gas with resonant interactions when the effective range is appreciable. Using an effective field theory for a large scattering length and large effective range, we show how calculations in this regime become tractable. Our results are model independent, and as an application, we study the neutron matter equation of state at low densities of astrophysical interest 0.002 fm(-3) < rho < 0.02 fm(-3), for which the interparticle separation is comparable to the effective range. We compare our simple results with those of conventional many-body calculations.  相似文献   

8.
Density distributions of light neutron-rich nuclei are studied by using the relativistic mean-field approach. The effective interaction which parameterizes the recent Dirac-Brueckner-Hartree-Fock calculations of nuclear matter is used. The results are discussed and compared with the experimental observations with special reference to theneutron halo in the drip-line nuclei.  相似文献   

9.
Neutron stars are studied in the framework of nuclear relativistic field theory. Hyperons and pions significantly soften the equation of state of neutron star matter at moderate and high density. We conjecture that they are responsible for the softening that is found to be crucial to the bounce scenario in supernova calculations. Hyperons reduce the limiting mass of neutron stars predicted by theory by one half solar mass or more, which is a large effect compared to the range in which theories of matter predict this limit to fall.  相似文献   

10.
11.
The properties of inhomogeneous neutron matter are crucial to the physics of neutron-rich nuclei and the crust of neutron stars. Advances in computational techniques now allow us to accurately determine the binding energies and densities of many neutrons interacting via realistic microscopic interactions and confined in external fields. We perform calculations for different external fields and across several shells to place important constraints on inhomogeneous neutron matter, and hence the large isospin limit of the nuclear energy density functionals that are used to predict properties of heavy nuclei and neutron star crusts. We find important differences between microscopic calculations and current density functionals; in particular, the isovector gradient terms are significantly more repulsive than in traditional models, and the spin-orbit and pairing forces are comparatively weaker.  相似文献   

12.
We present a systematic scheme for calculating the ground-state energy, single-particle energies and the effective mass, Fermi-liquid parameters, and pairing matrix elements for nuclear and neutron matter with realistic state-dependent interactions. The method retains much of the clarity of more conventional treatments while permitting reliable numerical calculations. Deficiencies in the central Jastrow correlation operator ansatz are largely overcome by low-order perturbation theory in the correlated basis generated by the Jastrow operator. Calculations of these quantities are presented for the Reid and Bethe-Johnson interactions. An analysis of the results emphasizes the importance of state-dependent correlations arising directly from the interaction or indirectly through many-body effects. The numerical results provide insight into the actual structure of the self-energy operator in nuclear and neutron matter and into the usefulness of sum rules for the quasiparticle interaction and the Landau parameters.  相似文献   

13.
A Jastrow-type wave function, with the two-body correlation factor depending on the spin-isospin state of the particles, is used for variational calculations of the energy per particle of infinite Fermi systems. Results are presented for nuclear matter and neutron matter using two semi-realistic potentials.  相似文献   

14.
We present Dirac-Brueckner-Hartree-Fock calculations for isospin asymmetric nuclear matter which are based on improved approximations schemes. The potential matrix elements have been adapted for isospin asymmetric nuclear matter in order to account for the proton-neutron mass splitting in a more consistent way. The proton properties are particularly sensitive to this adaption and its consequences, whereas the neutron properties remains almost unaffected in neutron-rich matter. Although at present full Brueckner calculations are still too complex to apply to finite nuclei, these relativistic Brueckner results can be used as a guidance to construct a density-dependent relativistic mean-field theory, which can be applied to finite nuclei. It is found that an accurate reproduction of the Dirac-Brueckner-Hartree-Fock equation of state requires a renormalization of these coupling functions.  相似文献   

15.
Using a phenomenological form of the equation of state of neutron matter near the saturation density which has been previously demonstrated to be a good characterization of quantum Monte Carlo simulations, we show that currently available neutron star mass and radius measurements provide a significant constraint on the equation of state of neutron matter. At higher densities we model the equation of state by using polytropes and a quark matter model. We show that observations offer an important constraint on the strength of the three-body force in neutron matter, and thus some theoretical models of the three-body force may be ruled out by currently available astrophysical data. In addition, we obtain an estimate of the symmetry energy of nuclear matter and its slope that can be directly compared to the experiment and other theoretical calculations.  相似文献   

16.
马中玉  荣健 《中国物理 C》2006,30(12):1230-1233
在Dirac Brueckner Hartree-Fock (DBHF)理论框架下研究了核子光学势和核子有效质量的同位旋相关性. 非对称核物质的计算采用了DBHF的核子自能的Dirac结构的新的分解方法, 核子自能的实部是用G矩阵在Hartree-Fock近似下计算得到, 而虚部从极化图得到. 用核子的薛定谔等价势可以得到核子矢量有效质量. 研究表明考虑了核势的能量相关性在丰中子核物质情况下核子矢量有效质量比质子的大.  相似文献   

17.
The purpose of the present work is to extend earlier nuclear matter calculations to study the properties of neutron matter. The binding energy per particle, symmetry energy, single particle potential, effective mass, and magnetic susceptibility are calculated using a modified Skyrme interaction. These are calculated as a function of the Fermi momentum kf in the range 0 < kf < 2 fm?1. Two sets of the interaction parameters are obtained by fitting the interaction parameters using the available information on neutron matter. Relativistic corrections to the order 1/c2 are also calculated. The relativistic corrections are very small and they increase as kf is increased.  相似文献   

18.
We present results for the spin-1 color-spin-locking (CSL) phase using a NJL-type model in two-flavor quark matter for compact stars applications. The CSL condensate is flavor symmetric and therefore charge and color neutrality can easily be satisfied. We find small energy gaps ≃ 1MeV, which make the CSL matter composition and the EoS not very different from the normal quark matter phase. We keep finite quark masses in our calculations and obtain no gapless modes that could have strong consequences in the late cooling of neutron stars. Finally, we show that the region of the phase diagram relevant for neutron star cores, when asymmetric flavor pairing is suppressed, could be covered by the CSL phase.  相似文献   

19.
The equation of state for nuclear matter at finite temperature and the properties of neutron stars are studied starting from an effective Lagrangian in the framework of the relativistic mean field theory. We find that the empirical properties of nuclear matter can be reproduced if the medium effects are mainly described in terms of the Brown-Rho mass scaling on top of the Bonn potential used as the underlying bare nucleon-nucleon interaction. In particular a correct symmetry energy at saturation density is obtained. The extrapolation of the equation of state to neutron matter and some predictions for the neutron-star masses are finally discussed and compared with other nucleonic many-body approaches.PACS: 21.65. + f Nuclear matter - 21.30.Fe Forces in hadronic systems and effective interactions - 97.60.Jd Neutron stars  相似文献   

20.
Density-dependent parametrization models of the nucleon-meson coupfing constants, including the isovector scalar δ-field, are applied to asymmetric nuclear matter. The nuclear equation of state (EOS) and the neutron star properties are studied in a relativistic Lagrangian density, using the relativistic mean field (RMF) hadron theory. It is known that the δ-field in the constant coupling scheme leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses, finally influences the stability of the neutron stars. We use density-dependent models of the nucleon-meson couplings to study the properties of neutron star matter and to reexamine the (~-field effects in asymmetric nuclear matter. Our calculation shows that the stability conditions of the neutron star matter can be improved in presence of the δ-meson in the density-dependent models of the coupling constants. The EOS of nuclear matter strongly depends on the density dependence of the interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号