首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a treatment of bosonic strings on a general curved background in which the volume element and the coordinates of the worldsheet are related in a similar way as canonically conjugate quantities in mechanics. The resultant formalism is a particular variant of the multi-phase-space approach to classical field theory put forward by Kijowski, Tulczyjew, and others. We study conservation laws within this framework and find that all conserved quantities are related to point symmetries, i.e., isometries of the underlying spacetime. Thus, the symmetries of relativistic mechanics coming from Killing tensors have no analogue here. We furthermore deduce from the present scheme the covariant version of the usual phase space.  相似文献   

2.
This paper presents a quantum mechanical formalism of the classical coherence theory, within which the generalized radiance function defined in the time domain is regarded as a phase space representative of a time-dependent correlation operator of a polychromatic field. The theory deals with both stationary and nonstationary fields and, for a stationary field, provides a new operator formalism of the usual theory of optical coherence developed in the space-frequency domain. New results include an operator representation of the mutual coherence function, an operator version of the Wiener-Khintchine theorem, and an operator theorem that projects the correlation operator of a polychromatic field onto a particular spectral component. As illustrative examples, the previous formulas regarding the relationship between temporal coherence and spatial coherence, and the relationship between spectral properties and coherence properties are derived from the new operator formulas. The correspondence of the present formalism to the usual formalism using Dirac notation to describe the propagation of a stationary, partially coherent, quasi-monochromatic field is also considered.  相似文献   

3.
The optical absorption spectra of Si(n)H(m) nanoclusters up to approximately 250 atoms are computed using a linear response theory within the time-dependent local density approximation (TDLDA). The TDLDA formalism allows the electronic screening and correlation effects, which determine exciton binding energies, to be naturally incorporated within an ab initio framework. We find the calculated excitation energies and optical absorption gaps to be in good agreement with experiment in the limit of both small and large clusters. The TDLDA absorption spectra exhibit substantial blueshifts with respect to the spectra obtained within the time-independent local density approximation.  相似文献   

4.
5.
Conductance is related to dynamical correlation functions which can be calculated with time-dependent methods. Using boundary conformal field theory, we relate the conductance tensors of quantum junctions of multiple wires to static correlation functions in a finite system. We then propose a general method for determining the conductance through time-independent calculations alone. Applying the method to a Y junction of interacting quantum wires, we numerically verify the theoretical prediction for the conductance of the chiral fixed point of the Y junction and then calculate the thus far unknown conductance of its M fixed point with the time-independent density matrix renormalization group method.  相似文献   

6.
We propose an approach to investigate properties of the time relaxation to stationary nonequilibrium states of correlation functions of stochastic Ginzburg–Landau models with noise (temperature of the reservoirs in contact with the system) changing in space. The formalism relates the stochastic expectations to correlation functions of an imaginary time field theory, and it allows us to study the nonlinear dynamics in terms of a field theory given by a perturbation of a Gaussian measure related to the (easier) linear dynamical problem. To show the usefulness of the formalism, we argue that a perturbative analysis within the integral representation is enough to give us the time relaxation rates of the correlations in some situations.  相似文献   

7.
Quantum phase distribution is expressed in terms of action-angle Wigner distribution function. It turns out to coincide with the limit case of Pegg-Barnett theory. This discrete phase space approach, in which some concepts such as quantum phase operator are not needed, can express phase-related quantities in a unified way. The expectation values and variances of cosθ and sinθ are the same as those of Susskind-Glogolver theory. The phase-(particle) number uncertainty has a simple form in this formalism.  相似文献   

8.
《Nuclear Physics B》1986,278(1):91-120
The covariant perturbation theory rules that should arise from any gauge invariant string field theory, such as those proposed on the basis of BRST formalism, are set forth. The resulting path integral expressions naturally produce coordinate invariant densities on the moduli space of Riemann surfaces; these include the Koba-Nielsen amplitudes. The connection between string field theory and modular invariance is discussed, and it is proposed that future explorations in string field theory focus on coordinate invariant quantities on moduli space.  相似文献   

9.
The Ising model of spin 1/2 with nearest-neighbour interaction is investigated. Within the effective-field theory introduced by Honmura and Kaneyoshi, a new type of decoupling approximation is introduced for treating the multispin correlation functions. The critical temperature, the spontaneous magnetization, and the two-site spin c correlation function are calculated for a two- (or three-) dimensional lattice. The present formalism yields results better than those of Bethe-Peierls approximation and is extended to disordered magnets. The thermodynamical quantities of quenched random-bond magnets, such as magnetization, susceptibility and so on, are studied, We find that in particular the twosite spin correlation functions of the disordered magnets exhibit some interesting behavior.  相似文献   

10.
The Kostant-Souriau geometric quantization theory is applied to the problem of constructing a generally covariant quantum field theory. The occupation number formalism for a scalar field is introduced as a semiclassical approximation which is valid in low curvature regions of space-time and which depends on making a particular choice of polarization in the classical phase space of a single massive particle. The application of the formalism to particle creation problems is outlined.  相似文献   

11.
Lattice models that can be used to discretize the quantum field theory with massless fermions have been discussed. These models can also be used to describe Dirac semimetals. It has been shown that the axial current for general lattice models should be redefined in order for the usual expression for the chiral anomaly to remain valid. In this case, in the presence of a time-independent potential of the external electromagnetic field, the formalism of Wigner transformations allows relating the divergence of the axial current to a topological invariant in the momentum space that is defined for a system in equilibrium and is responsible for the stability of the Fermi point. The evaluated expression is the axial anomaly for general lattice models. This expression has been illustrated for models with Wilson fermions.  相似文献   

12.
马永革  梁灿彬 《物理学报》1997,46(10):1873-1879
在Ashtekar形式下,广义相对论的相空间被嵌入到复SU(2)Yang-Mils理论的相空间里.将一般场论中分析局部对称性与约束的方法推广到复的场论,从自对偶Palatini形式的位形空间构造出Ashtekar形式的相空间,进而讨论了位形空间上的局部对称性与相空间上的约束的关系. 关键词:  相似文献   

13.
A two-spinor formalism for the Einstein Lagrangian is developed. The gravitational field is regarded as a composite object derived from soldering forms. Our formalism is geometrically and globally well-defined and may be used in virtually any 4m-dimensional manifold with arbitrary signature as well as without any stringent topological requirement on space-time, such as parallelizability. Interactions and feedbacks between gravity and spinor fields are considered. As is well known, the Hilbert–Einstein Lagrangian is second order also when expressed in terms of soldering forms. A covariant splitting is then analysed leading to a first-order Lagrangian which is recognized to play a fundamental role in the theory of conserved quantities. The splitting and thence the first-order Lagrangian depend on a reference spin connection which is physically interpreted as setting the zero level for conserved quantities. A complete and detailed treatment of conserved quantities is then presented.  相似文献   

14.
The quantum theory of a harmonic oscillator with a time dependent frequency arises in several important physical problems, especially in the study of quantum field theory in an external background. While the mathematics of this system is straightforward, several conceptual issues arise in such a study. We present a general formalism to address some of the conceptual issues like the emergence of classicality, definition of particle content, back reaction etc. In particular, we parameterize the wave function in terms of a complex number (which we call excitation parameter) and express all physically relevant quantities in terms it. Many of the notions—like those of particle number density, effective Lagrangian etc., which are usually defined using asymptotic in–out states—are generalized as time-dependent concepts and we show that these generalized definitions lead to useful and reasonable results. Having developed the general formalism we apply it to several examples. Exact analytic expressions are found for a particular toy model and approximate analytic solutions are obtained in the extreme cases of adiabatic and highly non-adiabatic evolution. We then work out the exact results numerically for a variety of models and compare them with the analytic results and approximations. The formalism is useful in addressing the question of emergence of classicality of the quantum state, its relation to particle production and to clarify several conceptual issues related to this. In Paper II which is a sequel to this, the formalism will be applied to analyze the corresponding issues in the context of quantum field theory in background cosmological models and electric fields.  相似文献   

15.
Mean field theory is given a geometrical interpretation as a Hamiltonian dynamical system. The Hartree-Fock phase space is the Grassmann manifold, a symplectic submanifold of the projective space of the full many-fermion Hilbert space. The integral curves of the Hartree-Fock vector field are the time-dependent Hartree-Fock solutions, while the critical points of the energy function are the time-independent states. The mean field theory is generalized beyond determinants to coadjoint orbit spaces of the unitary group; the Grassmann variety is the minimal coadjoint orbit.  相似文献   

16.
A theory is developed to describe dissociative recombination of a slow electron with a ground-state molecular ion of oxygen driven by a strong monochromatic electromagnetic field. Mathematically, the theory is based on the time-independent formalism of radiative scattering matrix whose poles correspond to dressed intermediate states of the complex. The analysis embraces both transitions to dissociative states and laserinduced nonadiabatic transitions to intermediate bound states of valence configurations. Key reaction mechanisms are considered, and a classification is given of all allowed transitions to dissociative states. Partial and total reaction cross sections are calculated by taking into account the contributions from Rydberg, valence, and dissociative states of O2**. A detailed discussion of results is presented, and feasibility of laser control of the reaction is demonstrated.  相似文献   

17.
We provide a reviewlike introduction to the quantum mechanical formalism related to non-Hermitian Hamiltonian systems with real eigenvalues. Starting with the time-independent framework, we explain how to determine an appropriate domain of a non-Hermitian Hamiltonian and pay particular attention to the role played by PJ symmetry and pseudo-Hermiticity. We discuss the time evolution of such systems having in particular the question in mind of how to couple consistently an electric field to pseudo-Hermitian Hamiltonians. We illustrate the general formalism with three explicit examples: (i) the generalized Swanson Hamiltonians, which constitute non-Hermitian extensions of anharmonic oscillators, (ii) the spiked harmonic oscillator, which exhibits explicit super-symmetry, and (iii) the ?x 4-potential, which serves as a toy model for the quantum field theoretical ?4-theory.  相似文献   

18.
We discuss a certain class of two-dimensional quantum systems which exhibit conventional order and topological order, as well as quantum critical points separating these phases. All of the ground-state equal-time correlators of these theories are equal to correlation functions of a local two-dimensional classical model. The critical points therefore exhibit a time-independent form of conformal invariance. These theories characterize the universality classes of two-dimensional quantum dimer models and of quantum generalizations of the eight-vertex model, as well as and non-abelian gauge theories. The conformal quantum critical points are relatives of the Lifshitz points of three-dimensional anisotropic classical systems such as smectic liquid crystals. In particular, the ground-state wave functional of these quantum Lifshitz points is just the statistical (Gibbs) weight of the ordinary two-dimensional free boson, the two-dimensional Gaussian model. The full phase diagram for the quantum eight-vertex model exhibits quantum critical lines with continuously varying critical exponents separating phases with long-range order from a deconfined topologically ordered liquid phase. We show how similar ideas also apply to a well-known field theory with non-Abelian symmetry, the strong-coupling limit of 2+1-dimensional Yang–Mills gauge theory with a Chern–Simons term. The ground state of this theory is relevant for recent theories of topological quantum computation.  相似文献   

19.
We propose that observables in quantum theory are properly understood as representatives of symmetry-invariant quantities relating one system to another, the latter to be called a reference system. We provide a rigorous mathematical language to introduce and study quantum reference systems, showing that the orthodox “absolute” quantities are good representatives of observable relative quantities if the reference state is suitably localised. We use this relational formalism to critique the literature on the relationship between reference frames and superselection rules, settling a long-standing debate on the subject.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号