首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We prove that a claw-free, 2-connected graph with fewer than 18 vertices is traceable, and we determine all non-traceable, claw-free, 2-connected graphs with exactly 18 vertices and a minimal number of edges. This complements a result of Matthews on Hamiltonian graphs.  相似文献   

2.
Ben Green 《Combinatorica》2005,25(3):307-326
Given a set A /N we may form a Cayley sum graph G A on vertex set /N by joining i to j if and only if i+j A. We investigate the extent to which performing this construction with a random set A simulates the generation of a random graph, proving that the clique number of G A is almost surely O(logN). This shows that Cayley sum graphs can furnish good examples of Ramsey graphs. To prove this result we must study the specific structure of set addition on /N. Indeed, we also show that the clique number of a random Cayley sum graph on =(/2) n is almost surely not O(log ||).* Supported by a grant from the Engineering and Physical Sciences Research Council of the UK and a Fellowship of Trinity College Cambridge.  相似文献   

3.
A clique is defined as a complete subgraph maximal under inclusion and having at least two vertices. A k-clique-coloring of a graph G is an assignment of k colors to the vertices of G such that no clique of G is monochromatic. Bacsó et al. (SIAM J Discrete Math 17:361–376, 2004) noted that the clique-coloring number is unbounded even for the line graphs of complete graphs. In this paper, we prove that a claw-free graph with maximum degree at most 7, except an odd cycle longer than 3, has a 2-clique-coloring by using a decomposition theorem of Chudnovsky and Seymour (J Combin Theory Ser B 98:839–938, 2008) and the limitation of the degree 7 is necessary since the line graph of \(K_{6}\) is a graph with maximum degree 8 but its clique-coloring number is 3 by the Ramsey number \(R(3,3)=6\). In addition, we point out that, if an arbitrary line graph of maximum degree at most d is m-clique-colorable (\(m\ge 3\)), then an arbitrary claw-free graph of maximum degree at most d is also m-clique-colorable.  相似文献   

4.
A set S of vertices in a graph G is a paired-dominating set of G if every vertex of G is adjacent to some vertex in S and if the subgraph induced by S contains a perfect matching. The minimum cardinality of a paired-dominating set of G is the paired-domination number of G, denoted by pr(G). If G does not contain a graph F as an induced subgraph, then G is said to be F-free. In particular if F=K1,3 or K4e, then we say that G is claw-free or diamond-free, respectively. Let G be a connected cubic graph of order n. We show that (i) if G is (K1,3,K4e,C4)-free, then pr(G)3n/8; (ii) if G is claw-free and diamond-free, then pr(G)2n/5; (iii) if G is claw-free, then pr(G)n/2. In all three cases, the extremal graphs are characterized.Research supported in part by the South African National Research Foundation and the University of KwaZulu-Natal. This paper was written while the second author was visiting the Laboratoire de Recherche en Informatique (LRI) at the Université de Paris-Sud in July 2002. The second author thanks the LRI for their warm hospitality  相似文献   

5.
A well-known result by O. Ore is that every graph of order n with d(u)+d(v)n+1 for any pair of nonadjacent vertices u and v is hamiltonian connected (i.e., for every pair of vertices, there is a hamiltonian path joining them). In this paper, we show that every 3-connected claw-free graph G on at most 5–8 vertices is hamiltonian connected, where denotes the minimum degree in G. This result generalizes several previous results.Acknowledgments. The author would like to thank the referee for his important suggestions and careful corrections.Final version received: March 12, 2003Supported by the project of Nature Science Funds of China  相似文献   

6.
Let R be a commutative ring and Г(R) be its zero-divisor graph.We com-pletely determine the structure of all finite commutative rings whose zero-divisor graphs have clique number one,two,or three.Furthermore,if R≌ Ri × R2 × … Rn (each Ri is local for i =1,2,3,…,n),we also give algebraic characterizations of the ring R when the clique number of r(R) is four.  相似文献   

7.
A paired-dominating set of a graph G is a dominating set of vertices whose induced subgraph has a perfect matching, while the paired-domination number, denoted by γ pr (G), is the minimum cardinality of a paired-dominating set in G. In this paper we investigate the paired-domination number in claw-free graphs. Specifically, we show that γ pr (G) ≤ (3n ? 1)/5 if G is a connected claw-free graph of order n with minimum degree at least three and that this bound is sharp.  相似文献   

8.
图G中最大完全子图的阶数称为G的团效.ω(π)和γ(π)分别表示实现度序列π=(d_1,d_2,…,d_n)的图的最大团数和最小团数.Erds,Jacobson和Lehel开始考虑确定具有相同度序列π的图的可能的团数问题.他们证明了对于充分大的n,有ω(π)-γ(π)-n一2n~(2/3).在本文中,我们首先估计了一类特殊可图序列的ω(π)之值,其次我们建立了一个估计任意可图序列π的ω(π)之值的算法.  相似文献   

9.
If every vertex cut of a graph G contains a locally 2-connected vertex, then G is quasilocally 2-connected. In this paper, we prove that every connected quasilocally 2-connected claw-free graph is Hamilton-connected.  相似文献   

10.
11.
In this paper, by means of computer checking, all simple graphs with at most two nonnegative eigenvalues, and all minimal simple graphs with exactly two (respectively, three) nonnegative eigenvalues are determined. Received: April 5, 1996 / Revised: May 2, 1997  相似文献   

12.
13.
Some known results on claw-free graphs are generalized to the larger class of almost claw-free graphs. In this paper, we prove several properties on longest cycles in almost claw-free graphs. In particular, we show the following two results.? (1) Every 2-connected almost claw-free graph on n vertices contains a cycle of length at least min {n, 2δ+4} and the bound 2δ+ 4 is best possible, thereby fully generalizing a result of Matthews and Sumner.? (2) Every 3-connected almost claw-free graph on n vertices contains a cycle of length at least min {n, 4δ}, thereby fully generalizing a result of MingChu Li. Received: September 17, 1996 Revised: September 22, 1998  相似文献   

14.
A graph G has a tank-ring factor F if F is a connected spanning subgraph with all vertices of degree 2 or 4 that consists of one cycle C and disjoint triangles attaching to exactly one vertex of C such that every component of G ? C contains exactly two vertices. In this paper, we show the following results. (1) Every supereulerian claw-free graph G with 1-hourglass property contains a tank-ring factor. (2) Every supereulerian claw-free graph with 2-hourglass property is Hamiltonian.  相似文献   

15.
16.
In this paper, we continue the study of semitotal domination in graphs in [Discrete Math. 324, 13–18 (2014)]. A set \({S}\) of vertices in \({G}\) is a semitotal dominating set of \({G}\) if it is a dominating set of \({G}\) and every vertex in \({S}\) is within distance 2 of another vertex of \({S}\). The semitotal domination number, \({{\gamma_{t2}}(G)}\), is the minimum cardinality of a semitotal dominating set of \({G}\). This domination parameter is squeezed between arguably the two most important domination parameters; namely, the domination number, \({\gamma (G)}\), and the total domination number, \({{\gamma_{t}}(G)}\). We observe that \({\gamma (G) \leq {\gamma_{t2}}(G) \leq {\gamma_{t}}(G)}\). A claw-free graph is a graph that does not contain \({K_{1, \, 3}}\) as an induced subgraph. We prove that if \({G}\) is a connected, claw-free, cubic graph of order \({n \geq 10}\), then \({{\gamma_{t2}}(G) \leq 4n/11}\).  相似文献   

17.
Acta Mathematicae Applicatae Sinica, English Series - Let r ≥ 3 be an integer such that r ? 2 is a prime power and let H be a connected graph on n vertices with average degree at least...  相似文献   

18.
19.
 Some known results on claw-free graphs are generalized to the larger class of almost claw-free graphs. In this paper, we prove the following two results and conjecture that every 5-connected almost claw-free graph is hamiltonian. (1). Every 2-connected almost claw-free graph GJ on n≤ 4 δ vertices is hamiltonian, where J is the set of all graphs defined as follows: any graph G in J can be decomposed into three disjoint connected subgraphs G 1, G 2 and G 3 such that E G (G i , G j ) = {u i , u j , v i v j } for ij and i,j = 1, 2, 3 (where u i v i V(G i ) for i = 1, 2, 3). Moreover the bound 4δ is best possible, thereby fully generalizing several previous results. (2). Every 3-connected almost claw-free graph on at most 5δ−5 vertices is hamiltonian, hereby fully generalizing the corresponding result on claw-free graphs. Received: September 21, 1998 Final version received: August 18, 1999  相似文献   

20.
We say that a graph G is quasi claw-free if every pair (a 1, a 2) of vertices at distance 2 satisfies {uN (a 1)∩N (a 2) | N[u]⊆N[a 1]∪N [a 2]}≠∅. A cycle C is m-dominating if every vertex of G is of distance at most m from C. We prove that if G is a κ-connected (κ≥2) quasi claw-free graph then either G has an m-dominating cycle or G has a set of at least κ+1 vertices such that the distance between every pair of them is at least 2m+3. Received: June 12, 1996 Revised: November 9, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号