首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 444 毫秒
1.
缓蚀膜电化学行为与微观粘附力特征   总被引:4,自引:0,他引:4  
采用传统电化学测试技术及原子力显微镜(AFM)力曲线分析法对十二烷基硫醇/金电极以及十二烷基磺酸钠(SDS)/铝电极表面缓蚀吸附膜的吸附行为进行了研究. 结果表明, 随缓蚀剂浓度改变, 电极电化学行为与缓蚀膜的微观粘附力特征呈现出关联性的变化趋势, 表明AFM力曲线技术可成功应用于缓蚀膜吸附行为的研究.  相似文献   

2.
屈钧娥  郭兴蓬 《电化学》2005,11(3):319-323
应用原子力显微镜(AFM)探针刮伤技术研究缓蚀剂对探针诱导铜镍合金加速溶解作用的影响.实验表明,在1.5 mol/L NaC l和0.01 mol/L HC l溶液中,使用AFM探针在750 nN的力负载条件下以接触模式对铜镍合金表面持续扫描,会加速样品的溶解,并在探针刮擦区域形成蚀坑.将有机缓蚀剂十二胺及无机缓蚀剂铬酸钠添加到腐蚀介质中后,由于在合金表面形成了吸附膜和钝化膜,从而抑制探针刮擦引起的铜镍合金的加速溶解.  相似文献   

3.
红四氮唑在盐酸介质中对冷轧钢的缓蚀作用   总被引:5,自引:1,他引:4  
李向红  邓书端  付惠 《应用化学》2009,26(9):1075-1079
用失重法、电化学法和原子力显微镜(AFM)研究了红四氮唑在1.0 mol/L ~ 5.0 mol/L HCl介质中对冷轧钢的缓蚀作用。结果表明:红四氮唑对冷轧钢具有良好的缓蚀作用,为混合抑制型缓蚀剂,且在钢表面的吸附符合Langmuir吸附模型;并通过吸附热力学和动力学参数详细讨论了缓蚀作用机理;AFM测试结果表明红四氮唑在钢表面吸附形成了致密的缓蚀剂膜层。  相似文献   

4.
pH值对十二胺在碳钢表面的吸附行为及缓蚀机理的影响   总被引:1,自引:0,他引:1  
采用电化学方法和扫描电镜技术, 研究了pH值对十二胺在碳钢表面的吸附以及对碳钢CO2腐蚀缓蚀机理的影响. 研究结果表明, 溶液的pH值对十二胺的吸附和缓蚀机理起决定性作用. 十二胺对碳钢的缓蚀作用随溶液pH值的增加而增强. pH值为4.9时, 十二胺主要抑制腐蚀的阴极过程. 缓蚀剂分子在金属表面上的吸附能比较低, 缓蚀剂容易发生脱附, 因此不能有效抑制腐蚀反应的进行. pH值为6.9时, 缓蚀剂的吸附能较高, 能够牢固地吸附在金属表面, 形成有效的扩散阻挡层, 同时抑制腐蚀的阴、阳极过程, 从而有效地抑制腐蚀反应的进行.  相似文献   

5.
铁表面自组装缓蚀功能膜的电化学阻抗谱研究   总被引:2,自引:0,他引:2  
在铁表面自组装十四烷基胺膜.研究该膜在0.5 mol/LH2SO4溶液中对铁的缓蚀性能.电化学阻抗谱测试表明,随着组装时间的延长,缓蚀性能也随之增强,最大缓蚀效率为68.7%.而以十二烷基硫醇和十四烷基胺修饰的混合膜则更为致密、稳定,对铁的缓蚀能力也明显优于仅以十二烷基硫醇或十四烷基胺修饰的单一膜,其缓蚀效率可提高至78.2%.  相似文献   

6.
王彬  杜敏  张静 《物理化学学报》2011,27(1):120-126
采用失重法、交流阻抗(EIS)及傅里叶变换红外光谱(FT-IR)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等表面分析测试方法首次研究了硫脲基咪唑啉衍生物(TAI)作为抑制CO2腐蚀的气液双相缓蚀剂的缓蚀行为. 结果表明, 该硫脲基咪唑啉缓蚀剂能有效地抑制Q235 钢在气液双相中的CO2腐蚀. AFM测试结果表明该缓蚀剂能显著地降低碳钢表面的腐蚀破坏, 并且由于碳钢表面形成的缓蚀剂吸附膜的疏水作用,可在AFM探头和碳钢表面之间检测到更大的粘附力, 而探针与试样表面之间的长程静电斥力在气相中增加,在液相中由于表面电荷的屏蔽效应而减小. XPS和FT-IR 光谱测试表明液相中和气相中在碳钢表面形成吸附膜的缓蚀剂成分分别是硫脲基咪唑啉衍生物和其酸水解产物——酰胺. 以上结果也进一步证实了咪唑啉衍生物在酸性溶液中的水解机理.  相似文献   

7.
本文对铁在分别含有癸胺、二戊胺和十二烷基胺的存在或不存在氯离子的酸性溶液中的腐蚀速度和电化学行为进行了研究。并用原子吸收光谱技术验证了电化学测量结果。结果表明,在酸性介质中,有机胺和氯离子对铁的缓蚀存在协同效应。当有机胺浓度较低时,协同效应随氯离子含量的增加而提高,但在较高的吸附覆盖度下,协同效应的大小差异并不显著;当氯离子和有机胺浓度都很高时,有可能发生竞争吸附,导致协同效应降低。十二烷基胺和氯离子之间存在最大的协同效应,而二戊胺即使在与氯离子存在协同效应的情形下,也不具有很高的缓蚀作用。溶液中不存在氯离子时,有机胺在铁表二面的吸附主要降低铁阳极溶解的交换电流密度,而对氢阴极析出过程没有明显的影响,加入氯离子后,有机胺对铁腐蚀的阴、阳极过程都产生抑制作用,同时阻滞铁的阳极溶解和氢的阴极析出。无论体系中是否存在氯离子,有机胺从酸性水溶液中在铁电极表面的吸附存在两个覆盖区。在较低吸附覆盖度区间内,影响有机胶吸附行为的主要因素是铁电极表面的不均匀性;在较高的吸附覆盖度下,吸附在电极表面的有机胺极性分子间存在相互作用。分析和讨论了有机胺吸附对双电层电容的影响以及不同体系中吸附等温式热力学数据,初步提出了一个吸附模型对有机胺的缓蚀作用及与氯离子的协同效应作出了解释。  相似文献   

8.
空心莲子草提取物对钢在硫酸溶液中的缓蚀性能   总被引:1,自引:0,他引:1  
以空心莲子草(Alternanthera philoxeroides)为原料,采用40%(体积分数)乙醇水溶液为提取溶剂进行回流提取制得空心莲子草提取物(APE)。采用失重法、电化学法、扫描电子显微镜(SEM)及原子力显微镜(AFM)研究了APE在0.5 mol·L~(-1) H_2SO_4溶液中对冷轧钢的缓蚀性能及作用机理。结果表明,APE对冷轧钢在H_2SO_4溶液中具有较好的缓蚀性能,缓蚀率随APE浓度增加而增大,50℃时100 mg·L~(-1) APE的缓蚀率为84.7%;APE在钢表面的吸附模型符合Langmuir吸附等温式,且标准吸附Gibbs自由能为-29 kJ·mol~(-1)~-26 kJ·mol~(-1);动电位极化曲线表明APE属于抑制阴极为主的混合抑制型缓蚀剂;Nyquist图谱在高频区呈弥散容抗弧,而在低频区有小段感抗弧,添加APE后电荷转移电阻显著增大,SEM和AFM表征表明APE在冷轧钢表面形成吸附膜并起到缓蚀作用。  相似文献   

9.
云母表面吸附烷基伯胺对其疏水性的影响   总被引:3,自引:0,他引:3  
矿物表面的疏水性受吸附在其表面的表面活性剂的影响,进而影响矿物的浮选行为.本文通过表面接触角测量、原子力显微镜(AFM)观测以及密度泛函理论(DFT)和分子动力学(MD)模拟计算,研究了吸附在云母表面的烷基伯胺的链长对其疏水性的影响.通过比较氧密度和氢键数量分布,发现每个水分子在碳氢链尾端和水相接触的界面上相对于在体相中形成氢键的能力有所降低,而吸附烷基伯胺的云母由亲水性转化为疏水性.研究结果还表明,在单分子层吸附状态下,吸附十八胺的云母的疏水性比吸附十二胺的云母的疏水性要强,且由于十八胺的临界半胶束浓度(HMC)要远低于十二胺,十八胺更易在云母表面形成多层吸附,证明烷基伯胺的碳链越长,其对云母表面疏水性改善的能力越强.实验结果与理论计算结果吻合良好.  相似文献   

10.
利用电化学方法、物理检测技术及表面分析技术,针对十二烷基胺(DDA)作用于FeNiSiB非晶合金表面时,在不同浓度范围内,缓蚀效率与缓蚀剂2在不同的对应关系的现象、探讨了DDA的存在状态与其缓蚀行为的关系,利用物理测量技术对临界浓度前后DDA的存在状态进行了分析,利用扫描隧道显微镜捕获了高浓度时DDA在非晶合金表面的典型结构,详细阐述了DDA对非晶合金的微观缓蚀机制。  相似文献   

11.
In this paper we investigate the importance of electrostatic double layer forces on the adsorption of human serum albumin by UV-ozone modified polystyrene. Electrostatic forces were measured between oxidized polystyrene surfaces and gold-coated atomic force microscope (AFM) probes in phosphate buffered saline (PBS) solutions. The variation in surface potential with surface oxygen concentration was measured. The observed force characteristics were found to agree with the theory of electrical double layer interaction under the assumption of constant potential. Chemically patterned polystyrene surfaces with adjacent 5 microm x 5 microm polar and non-polar domains have been studied by AFM before and after human serum albumin adsorption. A topographically flat surface is observed before protein adsorption indicating that the patterning process does not physically modify the surface. Friction force imaging clearly reveals the oxidation pattern with the polar domains being characterised by a higher relative friction compared to the non-polar, untreated domains. Far-field force imaging was performed on the patterned surface using the interleave AFM mode to produce two-dimensional plots of the distribution of electrostatic double-layer forces formed when the patterned polystyrene surfaces is immersed in PBS. Imaging of protein layers adsorbed onto the chemically patterned surfaces indicates that the electrostatic double-layer force was a significant driving force in the interaction of protein with the surface.  相似文献   

12.
Physicochemical studies on the mechanisms of protein adsorption onto solid material surfaces have been extensively performed so far, mainly based on the analysis of factors such as the equilibrium adsorbed amount (adsorption isotherms), time-dependent change of adsorbed amount (adsorption kinetics), and conformational change of adsorbed protein. However, direct understanding of the strength of the molecular interaction between protein and the material surface has not been established yet. For this issue, the force measurement techniques of an atomic force microscope (AFM) using a protein-modified probe tip are recently becoming powerful tools to analyze the actual interaction forces between protein and material surfaces. In this mini review, we discuss the characteristics and interpretation of the AFM force-versus-distance curves (fd curves) obtained with the protein-modified probe tip, and the relationship between the forces measured from the fd curves and the driving forces in the natural process of protein adsorption. Relative degrees of each of the following contributions which determine the character of protein adsorption are clarified: (1) the intrinsic protein/material forces mediated by solvent, (2) the thermodynamic stability of protein/material adhesion interface, and (3) diffusion force of protein molecules. Within these driving forces, the latter two in particular are confirmed to play essential roles in determining the character of protein adsorption, based on the profiles of fd curves.  相似文献   

13.
Interaction forces between a fluorite (CaF2) surface and colloidal silica were measured by atomic force microscopy (AFM) in 1 x 10(-3) M NaNO3 at different pH values. Forces between the silica colloid and fluorite flat were measured at a range of pH values above the isoelectric point (IEP) of silica so that the forces were mainly controlled by the fluorite surface charge. In this way, the IEP of the fluorite surface was deduced from AFM force curves at pH approximately 9.2. Experimental force versus separation distance curves were in good agreement with theoretical predictions based on long-range electrostatic interactions, allowing the potential of the fluorite surface to be estimated from the experimental force curves. AFM-deduced surface potentials were generally lower than the published zeta potentials obtained from electrokinetic methods for powdered samples. Differences in methodology, orientation of the fluorite, surface carbonation, and equilibration time all could have contributed to this difference.  相似文献   

14.
Zhaoling Lu 《Acta Physico》2008,24(2):243-249
The effect of pH value on the adsorption behavior and inhibition mechanism of dodecylamine for carbon dioxide corrosion of carbon steel was investigated by electrochemical methods and scanning electron microscopy (SEM). The results indicated that the pH value of the solution played the crucial role to the adsorption behavior and inhibition mechanism of dodecylamine. The inhibition performance of dodecylamine on carbon steel was dependent on the pH value and the inhibition efficiency increased with the increase of pH value. At pH 4.9, dodecylamine mainly inhibited the cathode process of the corrosion. The adsorption energy of dodecylamine on the metal surface was lower. The adsorption of dodecylamine on the metal surface was not stable and an anode desorption phenomenon could be observed. Hence, dodecylamine did not provide effective inhibition to the corrosion. While at pH 6.9, it had much higher adsorption energy. Dodecylamine adsorbed on the metal surface tightly and formed the effective diffusion barrier which inhibited both the cathode and anode processes effectively.  相似文献   

15.
Adsorbed layers of "comb-type" copolymers consisting of PEG chains grafted onto a poly(l-lysine) (PLL) backbone on niobium oxide substrates were studied by colloid-probe AFM in order to characterize the interfacial forces associated with coatings of varying architectures (PEG/PLL ratios and PEG chain lengths) and their relevance to protein resistance. The steric and electrostatic forces measured varied substantially with the architecture of the PLL-g-PEG copolymers. Varying the ionic strength of the buffer solutions enabled discrimination between electrostatic and steric-entropic contributions to the net interfacial force. For high PEG grafting densities the steric component was most prominent, but at low ionic strengths and high grafting densities, a repulsive electrostatic surface force was also observed; its origin was assigned to the niobia charges beneath the copolymer, as insufficient protonated amine groups in the PLL backbone were available for compensation of the oxide surface charges. For lower grafting densities and lower ionic strengths there was a substantial attractive electrostatic contribution arising from interaction of the electrical double layer arising from the protonated amine groups, with that of the silica probe surface (as under low ionic strength conditions, the electrical double layer was thicker than the PEG layer). For these PLL-g-PEG coatings the net interfacial force can thus be a markedly varying superposition of electrostatic and steric-entropic contributions, depending on various factors. The force curves correlate with protein adsorption data, demonstrating the utility of AFM colloid-probe force measurements for quantitative analysis of surface forces and how they determine interfacial interactions with proteins. Such characterization of the net interfacial forces is essential to elucidate the multiple types of interfacial forces relevant to the interactions between PLL-g-PEG coatings and proteins and to advance interpretation of protein adsorption or repellence beyond the oversimplified steric barrier model; in particular, our data demonstrate the importance of an ionic-strength-dependent minimum PEG layer thickness to screen the electrostatic interactions of charged interfaces.  相似文献   

16.
The micro-Wilhelmy method is a well-established method of determining surface tension by measuring the force of withdrawing a tens of microns to millimeters in diameter cylindrical wire or fiber from a liquid. A comparison of insertion force to retraction force can also be used to determine the contact angle with the fiber. Given the limited availability of atomic force microscope (AFM) probes that have long constant diameter tips, force-distance (F-D) curves using probes with standard tapered tips have been difficult to relate to surface tension. In this report, constant diameter metal alloy nanowires (referred to as "nanoneedles") between 7.2 and 67 microm in length and 108 and 1006 nm in diameter were grown on AFM probes. F-D and Q damping AFM measurements of wetting and drag forces made with the probes were compared against standard macroscopic models of these forces on slender cylinders to estimate surface tension, contact angle, meniscus height, evaporation rate, and viscosity. The surface tensions for several low molecular weight liquids that were measured with these probes were between -4.2% and +8.3% of standard reported values. Also, the F-D curves show well-defined stair-step events on insertion and retraction from partial wetting liquids, compared to the continuously growing attractive force of standard tapered AFM probe tips. In the AFM used, the stair-step feature in F-D curves was repeatably monitored for at least 0.5 h (depending on the volatility of the liquid), and this feature was then used to evaluate evaporation rates (as low as 0.30 nm/s) through changes in the surface height of the liquid. A nanoneedle with a step change in diameter at a known distance from its end produced two steps in the F-D curve from which the meniscus height was determined. The step features enable meniscus height to be determined from distance between the steps, as an alternative to calculating the height corresponding to the AFM measured values of surface tension and contact angle. All but one of the eight measurements agreed to within 13%. The constant diameter of the nanoneedle also is used to relate viscous damping of the vibrating cantilever to a macroscopic model of Stokes drag on a long cylinder. Expected increases in drag force with insertion depth and viscosity are observed for several glycerol-water solutions. However, an additional damping term (associated with drag of the meniscus on the sidewalls of the nanoneedle) limits the sensitivity of the measurement of drag force for low-viscosity solutions, while low values of Q limit the sensitivity for high-viscosity solutions. Overall, reasonable correspondence is found between the macroscopic models and the measurements with the nanoneedle-tipped probes. Tighter environmental control of the AFM and treatments of needles to give them more ideal surfaces are expected to improve repeatability and make more evident subtle features that currently appear to be present on the F-D and Q damping curves.  相似文献   

17.
The adsorption of polyelectrolyte complexes, PEC, made from the cationic poly (diallyldimethylammonium) chloride (PDADMAC) and the anionic maleic acid-co-propene copolymer (MA-P) on a Si-wafer surface has been studied. The application of highly diluted colloidally dispersed PEC solutions led to the deposition of single PEC particles onto the surface of the Si-wafer. The interaction forces of the heterogeneously covered surface were monitored by direct force measurements with an atomic force microscope (AFM) in the force volume mode. On the surface of a single PEC particle drastic changes in the interaction forces were found in comparison with the unmodified Si-wafer: in all force vs. distance curves a strong increase of the adhesion was measured that can be attributed to the formation of electrostatic bonds between the negatively charged Si3N4-tip and the cationic excess charge of the PEC. Additionally, the behavior during approach of both surfaces has been distinct: at pH 6.1 we see a long range electrostatic attraction between the tip and the PEC particle. The attraction becomes even stronger at pH 4.1, because of an increased positive net charge. Generally, a heterogeneous surface with a wide variety of interaction features can be created by the adsorption of PEC particles.  相似文献   

18.
 The adhesion behavior that governs many technologically and biologically relevant polymer properties can be investigated by zeta potential measurements with varied electrolyte concentration or pH. In a previous work [1] it was found that the difference of the adsorption free energies of Cl- and K+ ions correlates with the adhesion force caused by van der Waals interactions, and that the decrease of adhesion strength by adsorption layers can be elucidated by zeta potential measurements. In order to confirm these interrelations, zeta potential measurements were combined with atomic force microscopy (AFM) measurements. Force–distance curves between poly(ether ether ketone) and fluorpolymers, respectively, and the Si3N4 tip of the AFM device in different electrolyte solutions were measured and analysed. The adsorption free energy of anions calculated from the Stern model correlates with their ability to prevent the adhesion between the polymer surface and the Si3N4 tip of the AFM device. These results demonstrate the influence of adsorption phenomena on the adhesion behavior of solids. The results obtained by AFM confirm the thesis that the electrical double layer of solid polymers in electrolyte solutions is governed by ion adsorption probably due to van der Waals interactions and that therefore van der Waals forces can be detected by zeta potential measurements. Received: 18 November 1997 Accepted: 19 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号