首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
We consider the estimation problem of a location parameter on a sample of size n from a two-sided Weibull type density % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaamOzaiaacIcacaWG4bGaeyOeI0IaeqiUdeNaaiykaiabg2da9iaa% doeacaGGOaGaeqySdeMaaiykaiGacwgacaGG4bGaaiiCaiaacIcacq% GHsislcaGG8bGaamiEaiabgkHiTiabeI7aXjaacYhadaahaaWcbeqa% aiabeg7aHbaakiaacMcaaaa!52AD!\[f(x - \theta ) = C(\alpha )\exp ( - |x - \theta |^\alpha )\] for –<x<, –<< and 1<a<3/2, where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gaam4qaiaacIcacqaHXoqycaGGPaGaeyypa0JaeqySdeMaai4laiaa% cUhacaaIYaGaeu4KdCKaaiikaiaaigdacaGGVaGaeqySdeMaaiykai% aac2haaaa!4B0E!\[C(\alpha ) = \alpha /\{ 2\Gamma (1/\alpha )\} \]. Then the bound for the distribution of asymptotically median unbiased estimators is obtained up to the 2a-th order, i.e., the order % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaamOBamaaCaaaleqabaGaeyOeI0IaaiikaiaaikdacqaHXoqycqGH% sislcaaIXaGaaiykaiaac+cacaaIYaaaaaaa!4444!\[n^{ - (2\alpha - 1)/2} \]. The asymptotic distribution of a maximum likelihood estimator (MLE) is also calculated up to the 2a-th order. It is shown that the MLE is not 2a-th order asymptotically efficient. The amount of the loss of asymptotic information of the MLE is given.  相似文献   

2.
This paper describes a procedure for testing the presence of a pure feedback loop in a transfer function model for a multivariate discrete dynamic stochastic system. A modification of the portmanteau statistic based on sample cross-covariance matrices of the prewhitened series is proposed. The statistic is shown to be asymptotically distributed according to a % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gaeq4Xdm2aaWbaaSqabeaacaaIYaaaaaaa!3E0C!\[\chi ^2 \]-distribution with certain degrees of freedom under some pure feedback assumptions. Some numerical results are given to show the behavior of the proposed method.  相似文献   

3.
Let F pxp have the multivariate F-distribution with a scale matrix and degrees of freedom n 1and n 2. In this paper the problem of estimating eigenvalues of is considered. By constructing the improved orthogonally invariant estimators % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaCbiaeaacqqHuoaraSqabeaacaqGEbaaaOGaaiikaiaadAeacaGG% Paaaaa!402A!\[\mathop \Delta \limits^{\rm{\^}} (F)\] of , which are analogous to Haff-type estimators of a normal covariance matrix, new estimators of eigenvalues of are given. This is because the eigenvalues of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaCbiaeaacqqHuoaraSqabeaacaqGEbaaaOGaaiikaiaadAeacaGG% Paaaaa!402A!\[\mathop \Delta \limits^{\rm{\^}} (F)\] are taken as estimates of the eigenvalues of .  相似文献   

4.
Let P N and Q N , N1, be two possible probability distributions of a random vector X N =(XN1,...,XNN), whose components are independent. Suppose P N and Q N have respective densities % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaamiCamaaBaaaleaacaWGobaabeaakiabg2da9maaxadabaGaeuiO% dafaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaaaGccaWGMbGaai% ikaiaadIhadaWgaaWcbaGaamOtaiaadMgaaeqaaOGaeyOeI0YaaCbi% aeaacqaH4oqCaSqabeaacaGGFbaaaOWaaSbaaSqaaiaad6eaaeqaaO% Gaaiykaaaa!4DEC!\[p_N = \mathop \Pi \limits_{i = 1}^N f(x_{Ni} - \mathop \theta \limits^\_ _N )\] and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaamyCamaaBaaaleaacaWGobaabeaakiabg2da9maaxadabaGaeuiO% dafaleaacaWGPbGaeyypa0JaaGymaaqaaiaad6eaaaGccaWGMbGaai% ikaiaadIhadaWgaaWcbaGaamOtaiaadMgaaeqaaOGaeyOeI0IaeqiU% de3aaSbaaSqaaiaad6eacaWGPbaabeaakiaacMcaaaa!4DA5!\[q_N = \mathop \Pi \limits_{i = 1}^N f(x_{Ni} - \theta _{Ni} )\], where % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaCbiaeaacqaH4oqCaSqabeaacaGGFbaaaOWaaSbaaSqaaiaad6ea% aeqaaOGaeyypa0JaamOtamaaCaaaleqabaGaeyOeI0IaaGymaaaakm% aaqahabaGaeqiUde3aaSbaaSqaaiaad6eacaWGPbaabeaaaeaacaWG% PbGaeyypa0JaaGymaaqaaiaad6eaa0GaeyyeIuoaaaa!4C75!\[\mathop \theta \limits^\_ _N = N^{ - 1} \sum\limits_{i = 1}^N {\theta _{Ni} } \], such that % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaCbeaeaacaqGTbGaaeyyaiaabIhaaSqaaiaaigdacqGHKjYOcaWG% PbGaeyizImQaamOtaaqabaGccaGG8bGaeqiUde3aaSbaaSqaaiaad6% eacaWGPbaabeaakiabgkHiTmaaxacabaGaeqiUdehaleqabaGaai4x% aaaakmaaBaaaleaacaWGobaabeaakiaacYhacqGH9aqpcaWGpbGaai% ikaiaad6eadaahaaWcbeqaaiabgkHiTiaaigdacaGGVaGaaGOmaaaa% kiaacMcaaaa!5647!\[\mathop {{\rm{max}}}\limits_{1 \le i \le N} |\theta _{Ni} - \mathop \theta \limits^\_ _N | = O(N^{ - 1/2} )\], f(x)>0 for almost every real x, f is absolutely continuous, and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaCbeaeaaciGGZbGaaiyDaiaacchaaSqaaiabeI7aXjaad+gacqGH% KjYOcqaH4oqCcqGHKjYOcqaH4oqCcaWGVbaabeaakmaapedabaGaai% 4waiaadAgaaSqaaiabg6HiLcqaaiabg6HiLcqdcqGHRiI8aOGaai4j% aiaacIcacaWG4bGaeyOeI0IaeqiUdeNaaiykamaaCaaaleqabaGaaG% Omaaaakiaac+cacaWGMbGaaiikaiaadIhacaGGPaGaamizaiaadIha% cqGH8aapcqGHEisPaaa!5ECE!\[\mathop {\sup }\limits_{\theta o \le \theta \le \theta o} \int_\infty ^\infty {[f} '(x - \theta )^2 /f(x)dx < \infty \] for some % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaeqiUde3aaSbaaSqaaiaaicdaaeqaaOGaeyOpa4JaaGimaaaa!3FD4!\[\theta _0 > 0\]. The contiguity of {q N } to {p N } is well known. In this paper it is proven that under these conditions {Q N } preserves C.-T.L.D. (Cramér-type large deviation) from {P N } for a general class of statistics which includes R-, U- and L-statistics as members. That means, for any {S N =SN(XN)} from , a C.-T.L.D. theorem with range Cxo(N) (any C0), 0<4-1, holds for {S N } under {P N }, implying that the same theorem holds for {S N } under {Q N }. It also provides a quick and simple way to establish C.-T.L.D. results for statistics under {Q N }.Research supported in part by grant VE87080 from the National Science Council, Republic of China.Part of the research was done while the author was visiting the Institute of Statistical Science, Academia Sinica, Taipei, Taiwan.  相似文献   

5.
The problem of estimating the common mean of k independent and univariate inverse Gaussian populations IG(, i ), i=1,..., k with unknown and unequal 's is considered. The difficulty with the maximum likelihood estimator of is pointed out, and a natural estimator % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% acciGaf8hVd0MbaGaaaaa!3D38!\[\tilde \mu \] of along the lines of Graybill and Deal is proposed. Various finite sample properties and some decision-theoretic properties of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% acciGaf8hVd0MbaGaaaaa!3D38!\[\tilde \mu \] are discussed.This research was partially supported by research grants #A3661 and #A3450 from NSERC of Canada.  相似文献   

6.
Assume n items are put on a life-time test, however for various reasons we have only observed the r 1-th,..., r k-th failure times % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaamiEamaaBaaaleaamiaadkhadaWgaaqaaSGaaGymaiaacYcaaWqa% baGaamOBaiaacYcacaGGUaGaaiOlaiaac6caaSqabaGccaGGSaGaam% iEamaaBaaaleaamiaadkhadaWgaaqaaSGaam4AaiaacYcaaWqabaGa% amOBaaWcbeaaaaa!48BB!\[x_{r_{1,} n,...} ,x_{r_{k,} n} \]with % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaaGimaiabgsMiJkaadIhadaWgaaWcbaadcaWGYbWaaSbaaeaaliaa% igdacaGGSaaameqaaiaad6gaaSqabaGccqGHKjYOcqWIVlctcqGHKj% YOcaWG4bWaaSbaaSqaaWGaamOCamaaBaaabaWccaWGRbGaaiilaaad% beaacaWGUbaaleqaaeXatLxBI9gBaGqbaOGae8hpaWJaeyOhIukaaa!521B!\[0 \le x_{r_{1,} n} \le \cdots \le x_{r_{k,} n} > \infty \]. This is a multiply Type II censored sample. A special case where each x ri ,n goes to a particular percentile of the population has been studied by various authors. But for the general situation where the number of gaps as well as the number of unobserved values in some gaps goes to , the asymptotic properties of MLE are still not clear. In this paper, we derive the conditions under which the maximum likelihood estimate of is consistent, asymptotically normal and efficient. As examples, we show that Weibull distribution, Gamma and Logistic distributions all satisfy these conditions.This research was supported in part by the Designated Research Initiative Fund, University of Maryland Baltimore County.  相似文献   

7.
Let X 1, X 2,... be a sequence of nonnegative integer valued random variables.For each nonnegative integer i, we are given a positive integer k i . For every i = 0, 1, 2,..., E i denotes the event that a run of i of length k i occurs in the sequence X 1, X 2,.... For the sequence X 1, X 2,..., the generalized pgf's of the distributions of the waiting times until the r-th occurrence among the events % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% WaaiWabeaacaWGfbWaaSbaaSqaaiaadMgaaeqaaaGccaGL7bGaayzF% aaWaa0baaSqaaiaadMgacqGH9aqpcaaIWaaabaGaeyOhIukaaaaa!43D8!\[\left\{ {E_i } \right\}_{i = 0}^\infty\]are obtained. Though our situations are general, the results are very simple. For the special cases that X's are i.i.d. and {0, 1}-valued, the corresponding results are consistent with previously published results.This research was partially supported by the ISM Cooperative Research Program (90-ISM-CRP-11) of the Institute of Statistical Mathematics.  相似文献   

8.
Let X=(X 1, X 2,..., X d ) t be a random vector of positive entries, such that for some =(1,2,..., d ) t , the vector X () defined by % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaamiwamaaDaaaleaamiaadMgaaSqaaWGaaiikaiabeU7aSnaaBaaa% baGaamyAaiaacMcaaeqaaaaakiabg2da9iaacIcadaWcgaqaaiaadI% fadaqhaaWcbaadcaWGPbaaleaamiabeU7aSnaaBaaabaGaamyAaaqa% baaaaOGaeyOeI0IaaGymaiaacMcaaeaacqaH7oaBdaWgaaWcbaadca% WGPbGaaiilaaWcbeaakiaadMgacqGH9aqpcaaIXaGaeSOjGSKaaiil% aiaadsgaaaaaaa!53BB!\[X_i^{(\lambda _{i)} } = ({{X_i^{\lambda _i } - 1)} \mathord{\left/ {\vphantom {{X_i^{\lambda _i } - 1)} {\lambda _{i,} i = 1 \ldots ,d}}} \right. \kern-\nulldelimiterspace} {\lambda _{i,} i = 1 \ldots ,d}}\]is elliptically symmetric. We describe a procedure based on the multivariate empirical characteristic function for estimating the i's. Asymptotic results regarding consistency of the estimators are given and we evaluate their performance in simulated data. In a one-dimensional setting, comparisons are made with other available transformations to symmetry.Adolfo Quiroz and Miguel Nakamura's research was partially supported by CONACYT (Mexico) grants numbers 1858E9219 and 4224E9405, while Dr. Quiroz was visiting Centro de Investigación en Matemáticas at Guanajuato, Mexico.  相似文献   

9.
Let X: p × 1, Y: p × 1 be independently and normally distributed p-vectors with unknown means 1, 2 and unknown covariance matrices 1, 2 (>0) respectively. We shall show that Pillai's test, which is locally best invariant, is locally minimax for testing H 0: 1=2 against the alternative H 1: % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GaaeiDaiaabkhacaqGOaWaaabmaeaadaaeqaqaaiabgkHiTiaadMea% caGGPaGaaiiiaiabg2da9iaacccacqaHdpWCcaGGGaGaeyOpa4Jaai% iiaiaaicdaaSqaaiaaigdaaeqaniabggHiLdaaleaacaqGYaaabaGa% aeylaiaabgdaa0GaeyyeIuoaaaa!4E3F!\[{\rm{tr(}}\sum\nolimits_{\rm{2}}^{{\rm{ - 1}}} {\sum\nolimits_1 { - I) = \sigma > 0} }\]as 0. However this test is not of type D among G-invariant tests.Research supported by the Canadian N.S.E.R.C. Grant.  相似文献   

10.
This paper considers the asymptotic properties of two kernel estimates % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\], which have been proposed by Bhattacharyya et al. (1988, Comm. Statist. Theory Methods, A17, 3629–3644) and Jones (1991, Biometrika, 78, 511–519), respectively, for estimating the underlying density f at a point under a general selection biased model. The asymptotic optimality of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]is measured by the corresponding asymptotic minimax mean squared errors under a compactly supported Lipschitz continuous family of the underlying densities. It is shown that, in general, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]is a superior local estimate than % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]in the sense that the asymptotic minimax risk of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]is lower than that of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaacamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E82!\[\tilde f_{_n }\]. The minimax kernels and bandwidths of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciqa-zgagaqcamaaBaaaleaadaWgaaadbaGaa8NBaaqabaaa% leqaaaaa!3E83!\[\hat f_{_n }\]are computed explicity and shown to have simple forms and depend on the weight functions of the model.  相似文献   

11.
Let X 1, X 2, ..., X n be independent observations from an (unknown) absolutely continuous univariate distribution with density f and let % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% GabmOzayaajaGaaiikaiaadIhacaGGPaGaeyypa0Jaaiikaiaad6ga% caWGObGaaiykamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaaqadaba% Gaam4saiaacUfadaWcgaqaaiaacIcacaWG4bGaeyOeI0Iaamiwamaa% BaaaleaacaWGPbaabeaakiaacMcaaeaacaWGObGaaiyxaaaaaSqaai% aadMgacqGH9aqpcaaIXaaabaGaamOBaaqdcqGHris5aaaa!5356!\[\hat f(x) = (nh)^{ - 1} \sum\nolimits_{i = 1}^n {K[{{(x - X_i )} \mathord{\left/ {\vphantom {{(x - X_i )} {h]}}} \right. \kern-\nulldelimiterspace} {h]}}} \] be a kernel estimator of f(x) at the point x, \s-<x<, with h=h n (h n O and nh n , as n) the bandwidth and K a kernel function of order r. Optimal rates of convergence to zero for the bias and mean square error of such estimators have been studied and established by several authors under varying conditions on K and f. These conditions, however, have invariably included the assumption of existence of the r-th order derivative for f at the point x. It is shown in this paper that these rates of convergence remain valid without any differentiability assumptions on f at x. Instead some simple regularity conditions are imposed on the density f at the point of interest. Our methods are based on certain results in the theory of semi-groups of linear operators and the notions and relations of calculus of finite differences.This research was supported in part by grants from the Natural Sciences and Engineering Research Council of Canada and the University of Alberta Central Research Fund.  相似文献   

12.
For independent random variables X and Y, define % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaabofaruWrL9MCNLwyaGqbciaa-bcacqGHHjIUcaWFGaGaa8hw% aiaa-TcacaWFzbaaaa!4551!\[{\rm{S}} \equiv X + Y\]. When the conditional expectations % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadweacaGGBbqefCuzVj3zPfgaiuGajaaqcaWFNbGccaGGOaGa% amiwaiaacMcacaGG8bGaam4uaiaac2facqGHHjIUcaWGHbGaaiikai% aadofacaGGPaaaaa!4BC4!\[E[g(X)|S] \equiv a(S)\]and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadweacaGGBbGaamiAaiaacIcacaWGybGaaiykaiaacYhacaWG% tbGaaiyxaiabggMi6kaadkgacaGGOaGaam4uaiaacMcaaaa!4894!\[E[h(X)|S] \equiv b(S)\]are given, then under certain assumptions, the density function of X has the form of u(x)k()eax, where u(x) is uniquely determined by the functions a(·) and b(·).  相似文献   

13.
We consider the Cauchy problem for the generalized Korteweg-de Vries equation% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabgkGi2oaaBaaaleaacaaIXaaabeaakiaadwhacqGHRaWkcqGH% ciITdaWgaaWcbaGaamiEaaqabaGccaGGOaGaeyOeI0IaeyOaIy7aa0% baaSqaaiaadIhaaeaacaaIYaaaaOGaaiykamaaCaaaleqabaGaeqyS% degaaOGaamyDaiabgUcaRiabgkGi2oaaBaaaleaacaWG4baabeaakm% aabmGabaWaaSaaaeaacaWG1bWaaWbaaSqabeaacqaH7oaBaaaakeaa% cqaH7oaBaaaacaGLOaGaayzkaaGaeyypa0JaaGimaaaa!56D5!\[\partial _1 u + \partial _x ( - \partial _x^2 )^\alpha u + \partial _x \left( {\frac{{u^\lambda }}{\lambda }} \right) = 0\]where is a positive real and and integer larger than 1. We obtain the detailed large distance behaviour of the fundamental solution of the linear problem and show that for 1/2 and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabeU7aSjabg6da+iabeg7aHjabgUcaRmaalaaabaGaaG4maaqa% aiaaikdaaaGaey4kaSYaaeWaceaacqaHXoqydaahaaWcbeqaaiaaik% daaaGccqGHRaWkcaaIZaGaeqySdeMaey4kaSYaaSaaaeaacaaI1aaa% baGaaGinaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaigdacaGGVa% GaaGOmaaaaaaa!4FF7!\[\lambda > \alpha + \frac{3}{2} + \left( {\alpha ^2 + 3\alpha + \frac{5}{4}} \right)^{1/2} \], solutions of the nonlinear equation with small initial conditions are smooth in the large and asymptotic when t± to solutions of the linear problem.  相似文献   

14.
The expression of the continuous distribution function F(x) is obtained whenever % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaerbhv2BYDwAHbacfiGaa8xBaiaabIcacaWG4bGaaiilaiaadMha% caqGPaGaa8hiaiaab2dacaWFGaGaa8xraiaa-HcacaWFybGaa8hiai% aa-XhacaWFGaGaa8hEaiaa-bcacqGHKjYOcaWFGaGaa8hwaiaa-bca% cqGHKjYOcaWFGaGaa8xEaiaa-Lcaaaa!53EE!\[m{\rm{(}}x,y{\rm{)}} {\rm{ = }} E(X | x \le X \le y)\]is known. Moreover, we obtain the necessary and sufficient conditions so that any function m: 2 is the conditional expectation % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadweacaGGOaGaamiwaerbhv2BYDwAHbacfiGaa8hiaiaacYha% caWFGaGaa8hEaiaa-bcacqGHKjYOcaWFGaGaa8hwaiaa-bcacqGHKj% YOcaWFGaGaa8xEaiaacMcaaaa!4D0D!\[E(X | x \le X \le y)\]of a random variable X with continuous distribution function. Furthermore, we relate m(x,y) to order statistics.  相似文献   

15.
Yudin  V. A. 《Mathematical Notes》2001,70(5-6):860-865
For trigonometric polynomials of two variables whose spectrum lies both in the interior and on the boundary of a strictly convex domain, the lower bounds of their norms on % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbnrfifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaq% Fr0xc9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qq% Q8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaca% WGmbaaaa!3934!\[L\] are given. They are expressed in terms of the Fourier coefficients whose numbers are located on the boundary.  相似文献   

16.
Let {S 1 (n)} n0and {S 2 (n)} n0be independent simple random walks in Z 4 starting at the origin, and let % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabfc6aqnaaBaaaleaacaqGPbaabeaatCvAUfKttLearyqr1ngB% Prgaiuaakiab-HcaOiaadggacaGGSaGaamOyaiab-LcaPiabg2da9i% ab-Tha7Hqbciab+Hha4jabgIGiolab+PfaAnaaCaaaleqabaGaaGin% aaaakiaacQdaieGacaqFtbWaaSbaaSqaaiaabMgaaeqaaOGae8hkaG% Iaa0xBaiab-LcaPiabg2da9iab+Hha4baa!5761!\[\Pi _{\rm{i}} (a,b) = \{ x \in Z^4 :S_{\rm{i}} (m) = x\]for the some % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaGqaciaa-1gacqGHiiIZtCvAUfKttLearyqr1ngBPrgaiuaacqGF% OaakcaWGHbGaaiilaiaadkgacqGFPaqkcqGF9bqFaaa!4936!\[m \in (a,b)\} \]. Let two integervalued sequences {a n}n0and {b n}n0be given, such that the limit limn a nexists and lim n b n=+. In this paper, it is shown that the probability of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabfc6aqnaaBaaaleaacaaIXaaabeaatCvAUfKttLearyqr1ngB% Prgaiuaakiab-HcaOiab-bdaWiab-XcaSiabg6HiLkab-LcaPiabgM% Iihlabfc6aqnaaBaaaleaacaaIYaaabeaakiab-HcaOiaadggadaWg% aaWcbaGaamOBaiaacYcaaeqaaOGaamyyamaaBaaaleaacaWGUbaabe% aakiabgUcaRiaadkgadaWgaaWcbaGaamOBaaqabaGccqWFPaqkcqGH% GjsUieaacaGFydaaaa!5904!\[\Pi _1 (0,\infty ) \cap \Pi _2 (a_{n,} a_n + b_n ) \ne \O \] is asymptotic to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaamaalaaabaGaaGymaaqaaiaaikdaaaGaciiBaiaac+gacaGGNbWe% xLMBb50ujbqeguuDJXwAKbacfaGae8hkaGIae8xmaeJae83kaSIaam% OyamaaBaaaleaacaWGUbaabeaakiaac+cacaWGHbWaaSbaaSqaaiaa% d6gaaeqaaOGae8xkaKIae83la8IaciiBaiaac+gacaGGNbGaamOyam% aaBaaaleaacaWGUbaabeaaaaa!5364!\[\frac{1}{2}\log (1 + b_n /a_n )/\log b_n \] if it tends to zero as n, and the probability of % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiabfc6aqnaaBaaaleaacaaIXaaabeaatCvAUfKttLearyqr1ngB% Prgaiuaakiab-HcaOiab-bdaWiab-XcaSiabg6HiLkab-LcaPiabgM% Iihlabfc6aqnaaBaaaleaacaaIYaaabeaakiab-HcaOiaadggadaWg% aaWcbaGaamOBaaqabaGccaGGSaGaamyyamaaBaaaleaacaWGUbaabe% aakiabgUcaRiaadkgadaWgaaWcbaGaamOBaaqabaGccqWFPaqkcqWF% 9aqpieaacaGFydaaaa!583C!\[\Pi _1 (0,\infty ) \cap \Pi _2 (a_n ,a_n + b_n ) = \O \]is asymptotic to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% abaeqabaaabaGaam4yaiaacUfaciGGSbGaai4BaiaacEgatCvAUfKt% tLearyqr1ngBPrgaiuaacqWFOaakcaWGHbWaaSbaaSqaaiaad6gaae% qaaOGaey4kaSIaamOyamaaBaaaleaacaWGUbaabeaakiab-LcaPiab% -9caViab-XgaSjab-9gaVjab-DgaNjab-HcaOiaadggadaWgaaWcba% GaamOBaaqabaGccqGHRaWkcaaIYaGae8xkaKIae8xxa01aaWbaaSqa% beaacqWFTaqlcqWFXaqmcqWFVaWlcqWFYaGmaaaaaaa!5BAC!\[\begin{array}{l} \Pi _1 (0,\infty ) \cap \Pi _2 (a_n ,a_n + b_n ) = \O \\ c[\log (a_n + b_n )/log(a_n + 2)]^{ - 1/2} \\ \end{array}\], for some constant c, if it tends to a finite constant (1) as n. These results extend some results obtained by G. F. Lawler about the intersection properties of simple random walks in Z 4. By using similar arguments, we also get corresponding results for the intersections of Wiener sausages in four dimensions. In particular, a conjecture suggested by M. Aizenman, which describes nonintersection of independent Wiener sausages in R 4, is proven.Partly supported by AvH Foundation.  相似文献   

17.
The noncharacteristic Cauchy problem for the heat equation:% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaadwhadaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaiikaiaadIha% caGGSaGaamiDaiaacMcacqGH9aqpcaWG1bWaaSbaaSqaaiaadshaae% qaaOGaaiikaiaadIhacaGGSaGaamiDaiaacMcacaGGSaqefeKCPfgB% aGqbbiaa-bcacaaIWaWefv3ySLgznfgDOjdaryqr1ngBPrginfgDOb% cv39gaiyqacqGFKjcHcaWG4bGae4hzIqOae4ha3hJaaeymaiaabYca% caqGTaGaeuOhIuQaeuipaWJaaeiDaiabfYda8iabf6HiLkaacYcaca% WG1bGaaiikaiaaicdacaGGSaGaamiDaiaacMcacqGH9aqpcqqHvpGA% caGGOaGaamiDaiaacMcacaGGSaGaamyDamaaBaaaleaacaWG4baabe% aakiaacIcacaaIWaGaaiilaiaadshacaGGPaGaeyypa0JaaGiYdiaa% cIcacaWG0bGaaiykaiaacYcacaWFGaGaeuOhIuQaeuipaWJaamiDai% abfYda8iabf6HiLcaa!82F8!\[u_{xx} (x,t) = u_t (x,t), 0 \le x \le {\rm{1, - }}\infty < {\rm{t}} < \infty ,u(0,t) = \varphi (t),u_x (0,t) = \psi (t), \infty < t < \infty \]is considered. This problem is well-known to be ill-posed. The well-posedness class of the problem is described and some approximation schemes are proposed. For the case of inexactly given data, a mollification method is suggested.  相似文献   

18.
The Laplace continued fraction is derived through a power series. It provides both upper bounds and lower bounds of the normal tail probability % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiqbfA6agzaaraaaaa!3DC0!\[\bar \Phi\](x), it is simple, it converges for x>0, and it is by far the best approximation for x3. The Laplace continued fraction is rederived as an extreme case of admissible bounds of the Mills' ratio, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiqbfA6agzaaraaaaa!3DC0!\[\bar \Phi\](x)/(x), in the family of ratios of two polynomials subject to a monotone decreasing absolute error. However, it is not optimal at any finite x. Convergence at the origin and local optimality of a subclass of admissible bounds are investigated. A modified continued fraction is proposed. It is the sharpest tail bound of the Mills' ratio, it has a satisfactory convergence rate for x1 and it is recommended for the entire range of x if a maximum absolute error of 10-4 is required.The efforts of the author were supported by the NSERC of Canada.  相似文献   

19.
The additive renormalization% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqGaaO% qaaiaabs7adaWgaaWcbaGaaeySdiaab6cacaqG0bqefeKCPfgBaGqb% diaa-bcaaeqaaOGaeyypa0Jaa8hiaiaacIcacaaIYaGaeqiWdaNaai% ykamaaCaaaleqabaGaeyOeI0IaaGymaiaac+cacaaIYaaaaGqadOGa% a4hiaiGacwgacaGG4bGaaiiCaiaacIcacqGHsislcaqGXoWaaWbaaS% qabeaacaqGYaaaaOGaai4laiaaikdacaGGPaGaa4hiaiaacQdaciGG% LbGaaiiEaiaacchacqGHXcqSdaWadiqaaiabgkHiTiaadkeacaGGNa% GaaiikaiaadshacaGGPaWaaWbaaSqabeaacaaIYaaaaOGaai4laiaa% ikdacaGFGaGaey4kaSIaa4hiaiaabg7acaWGcbGaai4jaiaacIcaca% WG0bGaaiykaaGaay5waiaaw2faaiaacQdaaaa!6C5C!\[{\rm{\delta }}_{{\rm{\alpha }}{\rm{.t}} } = (2\pi )^{ - 1/2} \exp ( - {\rm{\alpha }}^{\rm{2}} /2) :\exp \pm \left[ { - B'(t)^2 /2 + {\rm{\alpha }}B'(t)} \right]:\]is shown to be a generalized Brownian functional. Some of its properties are derived. is shown to be a generalized Brownian functional. Some of its properties are derived.On leave from Universidade do Minho, Area de Matematica, Largo Carlos Amarante, P-4700 Braga, Portugal.  相似文献   

20.
Spinor spaces can be represented as minimal left ideals of Clifford algebras and they are generated by primitive idempotents. Primitive idempotents of the Clifford algebras R p, q are shown to be products of mutually nonannihilating commuting idempotent % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiGc9yrFr0xXdbba91rFfpec8Eeeu0x% Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs% 0dXdbPYxe9vr0-vr0-vqpWqaaeaabaGaaiaacaqabeaadaqaaqGaaO% qaamaaleaaleaacaaIXaaabaGaaGOmaaaaaaa!3DBD!\[{\textstyle{1 \over 2}}\]2}}\](1+e T ), where the k=q–r q–p basis elements e T satisfy e T 2=1. The lattice generated by a set of mutually annihilating primitive idempotents is examined. The final result characterizes all Clifford algebras R p, q with an anti-involution such that each symmetric elements is either a nilpotent or then some right multiple of it is a nonzero symmetric idempotent. This happens when p+q<-3 and (p, q)(2, 1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号