首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work was to study both theoretically and experimentally the process of moisture redistribution and heat transfer due to phase changes during the tests of thermal conductivity in aerated autoclaved concrete (AAC) moist specimens. The different moisture contents of the test samples were obtained in climatic chamber at equilibrium conditions reached with constant air temperature and variable relative humidity. The moist specimens were sealed inside highly impermeable polyethylene bag, as required by UNI 10051, and placed in a heat flow meter apparatus. During the experimental thermal conductivity measurements, the temperature and heat flow rate were measured under transient and steady state conditions. A theoretical analysis of the heat and mass transfer process was performed and then a suitable numerical model was used to predict the moisture redistribution and heat transfer due to the phase changes. The theoretical model has been compared against the experimental data. Substantial agreement between numerical results and experimental data was found. Then several numerical simulations have been performed to study the influence of the errors due to phase changes and non-uniform moisture distribution during the test of thermal conductivity of moist AAC specimens.  相似文献   

2.
Comparisons of experimental observation of heat and moisture transfer through porous building materials with numerical results have been presented in numerous studies reported in the literature. However, some discrepancies have been observed, highlighting underestimation of sorption process and overestimation of desorption process. Some studies intend to explain the discrepancies by analyzing the importance of hysteresis effects as well as carrying out sensitivity analyses on the input parameters as convective transfer coefficients. This article intends to investigate the accuracy and efficiency of the coupled solution by adding advective transfer of both heat and moisture in the physical model. In addition, the efficient Scharfetter and Gummel numerical scheme is proposed to solve the system of advection–diffusion equations, which has the advantages of being well-balanced and asymptotically preserving. Moreover, the scheme is particularly efficient in terms of accuracy and reduction of computational time when using large spatial discretization parameters. Several linear and nonlinear cases are studied to validate the method and highlight its specific features. At the end, an experimental benchmark from the literature is considered. The numerical results are compared to the experimental data for a pure diffusive model and also for the proposed model. The latter presents better agreement with the experimental data. The influence of the hysteresis effects on the moisture capacity is also studied, by adding a third differential equation.  相似文献   

3.
A numerical approach for moisture transport in porous materials like concrete is presented. The model considers mass balance equations for the vapour phase and the water phase in the material together with constitutive equations for the mass flows and for the exchange of mass between the two phases. History-dependent sorption behaviour is introduced by considering scanning curves between the bounding desorption and absorption curves. The method, therefore, makes it possible to calculate equilibrium water contents for arbitrary relative humidity variations at every material point considered. The scanning curves for different wetting and drying conditions are constructed by using third degree polynomial expressions. The three coefficients describing the scanning curves is determined for each wetting and drying case by assuming a relation between the slope of boundary sorption curve and the scanning curve at the point where the moisture response enters the scanning domain. Furthermore, assuming that the slope of the scanning curve is the same as the boundary curve at the junction point, that is, at the point where the scanning curve hits the boundary curve once leaving the scanning domain, a complete cyclic behaviour can be considered. A finite element approach is described, which is capable of solving the non-linear coupled equation system. The numerical calculation is based on a Taylor expansion of the residual of the stated problem together with the establishment of a Newton–Raphson equilibrium iteration scheme within the time steps. Examples are presented illustrating the performance and potential of the model. Two different types of measurements on moisture content profiles in concrete are used to verify the relevance of the novel proposed model for moisture transport and sorption. It is shown that a good match between experimental results and model predictions can be obtained by fitting the included material constants and parameters.  相似文献   

4.
Motivated by the puzzle of sorption hysteresis in Portland cement concrete or cement paste, we develop in Part II of this study a general theory of vapor sorption and desorption from nanoporous solids, which attributes hysteresis to hindered molecular condensation with attractive lateral interactions. The classical mean-field theory of van der Waals is applied to predict the dependence of hysteresis on temperature and pore size, using the regular solution model and gradient energy of Cahn and Hilliard. A simple “hierarchical wetting” model for thin nanopores is developed to describe the case of strong wetting by the first monolayer, followed by condensation of nanodroplets and nanobubbles in the bulk. The model predicts a larger hysteresis critical temperature and enhanced hysteresis for molecular condensation across nanopores at high vapor pressure than within monolayers at low vapor pressure. For heterogeneous pores, the theory predicts sorption/desorption sequences similar to those seen in molecular dynamics simulations, where the interfacial energy (or gradient penalty) at nanopore junctions acts as a free energy barrier for snap-through instabilities. The model helps to quantitatively understand recent experimental data for concrete or cement paste wetting and drying cycles and suggests new experiments at different temperatures and humidity sweep rates.  相似文献   

5.
A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is based on the concept of examining the porous space at different levels of magnification. The conservation of the water vapour permeability of dry material is used as scaling criterion to link the different pore scales. A macroscopic permeability is deduced from the permeabilities calculated at the different levels of magnification. Each level of magnification is modelled using an isotropic nonplanar 2D cross-squared network. The multiscale network simulates the enhancement of water vapour permeability due to capillary condensation, the hysteresis phenomenon between wetting and drying, and the steep increase of moisture permeability at the critical moisture saturation level. The calculated network permeabilities are compared with experimental data for calcium silicate and ceramic brick and a good agreement is observed.  相似文献   

6.
In transport models for wood, sorption is an essential parameter. Sorption is the balancing process between the two phases of water present in wood below the fiber saturation point, namely water vapor in the lumens and bound water in the cell walls. To gain better insight into the physical background of transport processes, a special experimental test setup—the improved cup method—is presented. It allows for separation of sorption from other processes. In this test, a diffusion cup contains a thin specimen of wood, with one side facing outwards to a climate chamber and the opposite side facing inwards the cup. In contrast to the common cup method, the herein presented method uses a data logger for relative humidity and temperature placed inside the cup. The use of thin cross-cut specimens allows for explicit separation of the different processes occurring during transient moisture transport. Mass changes were determined and relative humidity inside the cups was measured for eight specimens of Norway spruce with different specimen thicknesses. Relative humidity was increased in three uniform steps in the test chamber from 4.0 up to 76.5%. The results obtained with this special test setup indicate that the sorption process is different than assumed in previous publications. This emphasizes the need of improved modeling approaches.  相似文献   

7.
8.
From experimental drying kinetics, an inverse technique is used to evaluate the moisture transport coefficients in building hygroscopic porous materials. Based on the macroscopic approach developed by Whitaker, a one-dimensional mathematical model is developed to predict heat and mass transfers in porous material. The parameters identification is made by the minimisation of the square deviation between numerical and experimental values of the surface temperature and the average moisture content. Two parameters of an exponential function describing the liquid phase transfer and one parameter relative to the diffusion of the vapour phase are identified. To ensure the feasibility of the estimation method, it is initially validated with cellular concrete and applied to lime paste.  相似文献   

9.
一种着装人体动态热湿传递模拟方法   总被引:2,自引:0,他引:2  
针对服装热湿功能设计问题,结合改进的人体热调节模型和微元织物热湿耦合模型,实现了着装人体动态热湿传递过程的模拟。水分的蒸发凝结、纤维对湿的吸附解吸、液态水的毛细传递、人体汗水在体表积聚等现象,及其对服装热性能的作用在模型中都给予了考虑。并给出了计算流程。算例表明了模拟方法的有效性。  相似文献   

10.
Moisture content changes during drying were investigated in the present work. Particular emphasis was placed on the initial stage of drying of saturated concrete, where moisture contents are high. For this stage of drying, experimental data are lacking, and no comprehensive theory exists to describe it. The present investigation was performed experimentally and numerically for drying of cylinders with one exposed end, made of normal weight and lightweight concrete with varying water to cement ratio (w/c). The gravimetric technique was employed to obtain the spatial distribution of moisture content. The experimental results obtained indicate that drying of concrete becomes diffusion controlled when the average moisture content decreases below 70 to 80% of the initial saturation. Typical drying rates are in the order of magnitude of 0.18 kg/day/m2 and 0.02 kg/day/m2 for the first and the second stage of drying, respectively. The lightweight concrete cylinders as compared to those made of normal weight concrete exhibited higher levels of moisture content throughout the process. At high w/c ratios, the moisture profiles for both types of cylinders, as expected, show steeper changes with time. Large, constant drying rates were observed both experimentally and numerically in the beginning of the drying. The numerical model developed is based on a generalized mathematical formulation for mass and heat transfer in porous media, and its predictions are in agreement with the experimental data within the uncertainty range of the input data.  相似文献   

11.
Accurate values of the moisture transfer parameters are necessary to study heat and mass transfer, particularly for the efficient design of both process and equipment. However, these parameters obtained from empirical equations or analytical solutions of Fick’s second diffusion law are generally different from each other. In order to make simulation more accurate and closer to the fact, it is necessary to perform theoretical analysis and test of available empirical equations in literatures. In this work, such efforts were made: firstly, moisture transfer parameters were evaluated by Bi–G correlation; then, the obtained parameters were substituted to Fick’s second law of diffusion model, and the model was numerically calculated with convective boundary condition. The results show that although the exponential equation fits the experimental data well, the data predicted from Fick’s second law deviate far from the experimental data. This implicates that Bi–G correlation need be further improved to obtain better accurate moisture transfer parameters.  相似文献   

12.
A characteristic feature of concrete under uniaxial compression is the development of cracks parallel to the loading direction. A damage constitutive model proposed by Ortiz [Ortiz, M., 1985. A constitutive theory for the inelastic behaviour of concrete. Mech. Mater. 4, 67–93] can predict the transverse tensile stress responsible for these cracks by considering the interaction between the aggregate and the mortar and the development of damage in the latter. When concrete is exposed to high temperature, as is the case during fire, the failure mode is thermal spalling. In order to improve the prediction of the stresses involved in this failure Ortiz’s model is extended to account for the effects of high temperature. Published experimental results for uniaxial and biaxial compression at high temperatures are used to calibrate the temperature dependence of some of the material properties. The transient creep strain is accounted for by modifying the constrained thermal strain. The stress analysis is coupled with hygro-thermal analysis of heat, mass transfer and pore pressure build-up. The effect of pore pressure on the damage evolution is modeled by applying a body force in the stress analysis module proportional to the pressure gradient. A numerical example of concrete under fire is solved and the computed results are discussed. Spalling is predicted when the damage variable reaches its maximum value of unity. The predicted depth and time of spalling for a range of variation of permeability and initial liquid water content are presented. They are in good agreement with published experimental results.  相似文献   

13.
In many industrial processes as well as in air conditioning systems heat and moisture is transferred by rotary heat exchangers from the warm exhaust air flow to the cold supply air flow. Rotary heat exchangers are classified as sorption rotors, hygroscopic rotors and condensation rotors. Basic mechanisms of heat and moisture transfer are presented. By means of the condensation potential as the difference between the moisture content of the warm air flow and the moisture content of the cold air flow at saturation the humidity transfer at the different rotor types is investigated. The condensation potential as a reference parameter provides the possibility to describe the influence of various air conditions in exhaust air and supply air flow on the humidity transfer of different rotary heat exchangers and to compare these rotors with each other. In order to give an overview of relevant design parameters, the influence of the speed of turning, the flute height of the rotor matrix and the velocity of the air flow regarding the heat and mass transfer is considered.  相似文献   

14.
A constitutive model of unsaturated soils with coupling capillary hystere- sis and skeleton deformation is developed and implemented in a fully coupled transient hydro-mechanical finite-element model (computer code U-DYSAC2). The obtained re- sults are compared with experimental results, showing that the proposed constitutive model can simulate the main mechanical and hydraulic behavior of unsaturated soils in a unified framework. The non-lineaxity of the soil-water characteristic relation is treated in a similar way of elastoplasticity. Two constitutive relations axe integrated by an implicit return-mapping scheme similar to that developed for saturated soils. A consistent tan- gential modulus is derived to preserve the asymptotic rate of the quadratic convergence of Newton's iteration. Combined with the integration of the constitutive model, a complete finite-element formulation of coupling hydro-mechanical problems for unsaturated soils is presented. A number of practical problems with different given initial and boundary conditions are analyzed to illustrate the performance and capabilities of the finite-element model.  相似文献   

15.
The hygroscopic behavior of earthen materials has been extensively studied in the past decades. However, while the air flow within their porous network may significantly affect the kinetics of vapor transfer and thus their hygroscopic performances, few studies have focused on its assessment. For that purpose, a key parameter would be the gas permeability of the material, and its evolution with the relative humidity of the air. Indeed, due to the sorption properties of earthen material, an evolution of the water content, and thus of relative permeability, are foreseeable if the humidity of in-pore air changes. To fill this gap, this paper presents the measurement of relative permeabilities of a compacted earth sample with a new experimental set-up. The air flow through the sample is induced with an air generator at controlled flow rate, temperature, and humidity. The sample geometry was chosen in order to reduce, as much as possible, its heterogeneity in water content, and the tests were realized for several flow rates. The results, which show the evolution of gas permeability with the relative humidity of the injected air and with the water content of the material, either in adsorption or in desorption, were eventually successfully compared to predictions of the well-known Corey's law.  相似文献   

16.
The aim of the present work is to investigate the behavior of building envelopes made of local lateritic soil bricks subjected to different climatic conditions. The building envelopes studied in this work consist of lateritic soil bricks with incorporation of natural pozzolan or sawdust in order to obtain small thermal conductivity and low-density materials. In order to describe coupled heat and moisture transfer in wet porous materials, the coupled equations were solved by the introduction of diffusion coefficients. A numerical model HMtrans, developed for prediction of heat and moisture transfer in multi-layered building components, was used to simulate the temperature, water content and relative humidity profiles within the building envelopes. The results allow the prediction of the duration of the exposed building walls to the local weather conditions. They show that the durability of building envelopes made of lateritic soil bricks with incorporation of natural pozzolan or sawdust is not strongly affected by the climatic conditions in tropical and equatorial areas.  相似文献   

17.
The heat and mass transfer in an unsaturated wet cylindrical porous bed packed with quartz particles was investigated theoretically for relatively low convective drying rates. Local thermodynamic equilibrium was assumed in the mathematical model describing the multi-phase flow in the unsaturated porous media using the energy and mass conservation equations to describe the heat and mass transfer during the drying. The drying model included convection and capillary transport of the free water, diffusion of bound water, and convection and diffusion of the gas. The numerical results indicated that the drying process could be divided into three periods, the temperature rise period, the constant drying rate period and the decreasing drying rate period. The numerical results agreed well with the experimental data verifying that the mathematical model can evaluate the drying performance of porous media for low drying rates. The effects of drying conditions such as the ambient temperature, the relative humidity, and the velocity of the drying air, on the drying process were evaluated by numerical solution.  相似文献   

18.
为了模拟多孔织物内复杂的热湿传递过程,为不同大气压力条件下服装的热湿舒适性设计提供理论基础,从织物内热湿传输机理角度出发,建立了考虑大气压力影响的织物热湿传输耦合模型,比较了常压下的理论预测和实验结果,通过数值算例考察了大气压力对织物热湿特性的影响。  相似文献   

19.
In the present work the concrete affected by alkali–silica reaction (ASR) is represented as a two-phase material made of a solid skeleton and a wet expanding gel, which exerts a pressure capable of severely damaging the concrete surrounding the reactive sites. Both the effects of temperature and humidity conditions on the kinetic of the chemical reaction and on the final value of the consequent expansion are included in the proposed model. The mechanical degradation induced by the ASR is described by a phenomenological isotropic damage model. The constitutive model, implemented in a finite element code, is used for the analyses of structures made of reactive concrete in the presence of temperature and moisture gradients. Firstly the temperature and humidity fields are obtained through uncoupled heat and moisture transport analyses and then the chemo-mechanical analysis is performed starting from the values of temperature and humidity preliminary calculated.  相似文献   

20.
This paper presents a method to predict the through-thickness moisture content distribution and associated induced deformations of paper and cardboard sheets as they are subjected to relative humidity changes. The transient moisture diffusion problem is solved using a “natural” analytic approach that has previously been applied for solving transient heat conduction in multi-layer solids. The deformation behaviour of the sheet during the moisture diffusion process is predicted using a semi-analytical approach based on a Rayleigh–Ritz minimization of the total potential energy. Geometrically nonlinear effects are taken into account. Curvatures of the originally flat sheet are predicted as a function of time, as are the shapes of the sheet for steady-state condition. As multiple solutions exist, stability is studied. The developed model was used to study the deformation behaviour of one paper and two cardboard sheets. Comparisons with finite-element results demonstrate that the developed model provides accurate results. The displacements obtained for steady-state conditions are within +6%. Comparisons with previous steady-state analyses reveal important differences in the shape of one cardboard sheet. This suggests that the moisture diffusion process may influence the configuration assumed by the sheet at steady-state equilibrium. Hence, it may be necessary to take the moisture diffusion into account in the analysis to accurately predict the hygro-mechanical behaviour of paper or cardboard sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号