首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present results from a systematic study of relative permeability functions derived from two-phase lattice Boltzmann (LB) simulations on X-ray microtomography pore space images of Bentheimer and Berea sandstone. The simulations mimic both unsteady- and steady-state experiments for measuring relative permeability. For steady-state flow, we reproduce drainage and imbibition relative permeability curves that are in good agreement with available experimental steady-state data. Relative permeabilities from unsteady-state displacements are derived by explicit calculations using the Johnson, Bossler and Naumann method with input from simulated production and pressure profiles. We find that the nonwetting phase relative permeability for drainage is over-predicted compared to the steady-state data. This is due to transient dynamic effects causing viscous instabilities. Thus, the calculated unsteady-state relative permeabilities for the drainage is fundamentally different from the steady-state situation where transient effects have vanished. These effects have a larger impact on the invading nonwetting fluid than the defending wetting fluid. Unsteady-state imbibition relative permeabilities are comparable to the steady-state ones. However, the appearance of a piston-like front disguises most of the displacement and data can only be determined for a restricted range of saturations. Relative permeabilities derived from unsteady-state displacements exhibit clear rate effects, and residual saturations depend strongly on the capillary number. We conclude that the LB method can provide a versatile tool to compute multiphase flow properties from pore space images and to explore the effects of imposed flow and fluid conditions on these properties. Also, dynamic effects are properly captured by the method, giving the opportunity to examine differences between steady and unsteady-state setups.  相似文献   

2.
A novel sintered–grooved composite wick structures has been developed for two-phase heat transfer devices. With ethanol as the working fluid, risen meniscus test is conducted to study the capillary force of wick structures. Infrared (IR) thermal imaging is used to identify and locate the liquid meniscus. The effects of sintered layer, V-grooves and powder size on capillary force are explored. The results show that the capillary force of composite wick structures is larger than that of grooved and sintered ones. Interaction wetting between groove and sintered powder happens during the liquid rise in composite wick, which provides an additional source of capillary force. It exhibits a variation of capillary force of composite wicks with different powder size due to the difference of open pore size and quantity in sintered porous matrix.  相似文献   

3.
Pore network analysis is used to investigate the effects of microscopic parameters of the pore structure such as pore geometry, pore-size distribution, pore space topology and fractal roughness porosity on resistivity index curves of strongly water-wet porous media. The pore structure is represented by a three-dimensional network of lamellar capillary tubes with fractal roughness features along their pore-walls. Oil-water drainage (conventional porous plate method) is simulated with a bond percolation-and-fractal roughness model without trapping of wetting fluid. The resistivity index, saturation exponent and capillary pressure are expressed as approximate functions of the pore network parameters by adopting some simplifying assumptions and using effective medium approximation, universal scaling laws of percolation theory and fractal geometry. Some new phenomenological models of resistivity index curves of porous media are derived. Finally, the eventual changes of resistivity index caused by the permanent entrapment of wetting fluid in the pore network are also studied.Resistivity index and saturation exponent are decreasing functions of the degree of correlation between pore volume and pore size as well as the width of the pore size distribution, whereas they are independent on the mean pore size. At low water saturations, the saturation exponent decreases or increases for pore systems of low or high fractal roughness porosity respectively, and obtains finite values only when the wetting fluid is not trapped in the pore network. The dependence of saturation exponent on water saturation weakens for strong correlation between pore volume and pore size, high network connectivity, medium pore-wall roughness porosity and medium width of the pore size distribution. The resistivity index can be described succesfully by generalized 3-parameter power functions of water saturation where the parameter values are related closely with the geometrical, topological and fractal properties of the pore structure.  相似文献   

4.
We present an application of 3D X-ray computed microtomography for studying the influence of numerical cementation on flow in a cement-lined rough-walled fracture. The imaged fracture geometry serves as input for flow modeling using a combination of the level set and the lattice Boltzmann methods to characterize the capillary-dominated fluid displacement properties and the relative permeability of the naturally cemented fracture. We further numerically add cement to the naturally cement-lined fracture to quantify the effect of increasing cement thickness and diminishing aperture on flow properties. Pore space geometric tortuosity and capillary pressure as a function of water saturation both increase with the numerically increased fracture cement thickness. The creation of unevenly distributed apertures and cement contact points during numerical cement growth causes the wetting and non-wetting fluids to impede each other, with no consistent trends in relative permeability with increasing saturation. Tortuosity of wetting and non-wetting fluid phases exhibits none to poor correlation with relative permeability and thus cannot be used to predict it, contrary to previous findings in smoother fractures.  相似文献   

5.
Pore Scale Modeling of Rate Effects in Imbibition   总被引:3,自引:0,他引:3  
We use pore scale network modeling to study the effects of flow rate and contact angle on imbibition relative permeabilities. The model accounts for flow in wetting layers that occupy roughness or crevices in the pore space. Viscous forces are accounted for by solving for the wetting phase pressure and assuming a fixed conductance in wetting layers. Three-dimensional simulations model granular media, whereas two-dimensional runs represent fracture flow.We identify five generic types of displacement pattern as we vary capillary number, contact angle, and initial wetting phase saturation: flat frontal advance, dendritic frontal advance, bond percolation, compact cluster growth, and ramified cluster growth. Using phase diagrams we quantify the range of physical properties under which each regime is observed. The work explains apparently inconsistent experimental measurements of relative permeability in granular media and fractures.  相似文献   

6.
7.
We have developed an efficient and accurate numerical implementation for pore-morphological modeling of drainage in two-dimensional, totally wetting porous media. The new numerical method uses level sets to describe the fluid distribution and polygons that can be defined with subgrid scale accuracy for the pore boundaries, while a previously developed approach represents the phases by pixels arranged on a square lattice. We analyze and compare the previous and new method. For both approaches, the simulated fluid saturations are first-order accurate. For the level-set approach, the simulated interfacial lengths converge to the real values, while the pixel approach yields biased results. The level-set method is orders of magnitudes faster than the pixel method.  相似文献   

8.
We predict capillary-pressure (drainage) curves in tight-gas sandstones which have little matrix or microporosity using a quantitative grain-scale model. The model accounts for the geometric results of some depositional and diagenetic processes important for porosity and permeability reduction in tight-gas sandstones, such as deformation of ductile grains during burial and quartz cementation. The model represents the original sediment as a dense, disordered packing of spheres. We simulated the evolution of this model sediment into a low-porosity sandstone by applying different amounts of ductile grains and quartz precipitation. A substantial fraction of original pore throats in the sediment is closed by the simulated diagenetic alteration. Because the percolation threshold corresponds to closure of half of the pore throats, the pore space in this type of tight-gas sandstone is poorly connected and is often close to being completely disconnected. The drainage curve for different model rocks was computed using invasion percolation in a network taken directly from the grain-scale geometry and topology of the model. Some general trends follow classical expectations and were confirmed by experimental measurements: increasing the amount of cement shifts the drainage curve to larger pressures. This is related to reduction of the connectivity of pore space resulting from closure of throats. Existence of ductile grains in the ductile grain model also reduces the connectivity of pore space but it treats the throats distribution differently causing the drainage curves to be shifted to larger irreducible water saturation when cement is added to the model. The range of porosities in which these connectivity effects are important corresponds to the range of porosities common for tight gas sandstones. Consequently these rocks can exhibit small effective permeability to gas even at large gas saturations. This problem occurs at larger porosities in rocks with significant content of ductile grains because ductile deformation blocks a significant fraction of pore throats even before cementation begins. Predicted drainage curves agree with measurements on two samples with little microporosity, one dominated by rigid grains, the other containing a significant fraction of ductile grains. We conclude that connectivity of the matrix pore space is an important factor for an understanding of flow properties of tight-gas sandstones.  相似文献   

9.
Shahidzadeh-Bonn  N.  Tournié  A.  Bichon  S.  Vié  P.  Rodts  S.  Faure  P.  Bertrand  F.  Azouni  A. 《Transport in Porous Media》2004,56(2):209-224
We examine the consequences of the wettability properties on the dynamics of gravity drainage in porous media. The relation between the wetting properties at the pore scale and the macroscale hydrodynamics is studied. Model porous media consisting of hydrophilic and hydrophobic glass beads or sand with well defined wetting properties, are prepared for this study. Gravity drainage experiments with air displacing water (two-phase flow), are performed for different Bond numbers, and using different techniques such as gamma-ray densitometry, magnetic resonance imaging (MRI) and weight measurements. The dynamics of drainage is found to be different for hydrophilic and hydrophobic porous media in the transition zone (funicular regime). Moreover, for hydrophilic (water-wet) porous media, MRI experiments reveal the importance of drainage through the continuous water film, which leads to an increase of the residual quantity of water in the transition zone with time.  相似文献   

10.
Man  H. N.  Jing  X. D. 《Transport in Porous Media》2000,41(3):263-285
In order to model petrophysical properties of hydrocarbon reservoir rocks, the underlying physics occurring in realistic rock pore structures must be captured. Experimental evidence showing variations of wetting occurring within a pore, and existence of the so-called 'non-Archie' behaviour, has led to numerical models using pore shapes with crevices (for example, square, elliptic, star-like shapes, etc.). This paper presents theoretical derivations and simulation results of a new pore space network model for the prediction of petrophysical properties of reservoir rocks. The effects of key pore geometrical factors such as pore shape, pore size distribution and pore co-ordination number (pore connectivity) have been incorporated into the theoretical model. In particular, the model is used to investigate the effects of wettability and saturation history on electrical resistivity and capillary pressure characteristics. The petrophysical characteristics were simulated for reservoir rock samples. The use of the more realistic grain boundary pore (GBP) shape allows simulation of the generic behaviour of sandstone rocks, with various wetting scenarios. The predictions are in close agreement with electrical resistivity and capillary pressure characteristics observed in experiments.  相似文献   

11.
The percolation theory approach to static and dynamic properties of the single- and two-phase fluid flow in porous media is described. Using percolation cluster scaling laws, one can obtain functional relations between the saturation fraction of a given phase and the capillary pressure, the relative permeability, and the dispersion coefficient, in drainage and imbibition processes. In addition, the scale dependency of the transport coefficient is shown to be an outcome of the fractal nature of pore space and of the random flow pattern of the fluids or contaminant.  相似文献   

12.
Radon emanation which is the fraction of radon-222 atoms released in the connected pore space of a porous material, increases when the water content increases because of the low recoil range of this atom in water compared with air. This complex phenomenon is studied using reconstructed porous media and random packings where the phase distribution is obtained by a lattice Boltzmann technique incorporating interfacial tension and wetting. The influence of the pore structure, of the recoil range and of saturation, is systematically studied. The numerical results are in good agreement with data from uranium mine tailings.  相似文献   

13.
The immiscible displacement of a wetting fluid by a non-wetting one in heterogeneous porous media is modeled using a multi-scale network-type analysis: (1) The pressure-controlled immiscible displacement of water by oil in pore-and-throat networks (1st length scale ~ 1?mm) is simulated as a capillary-driven process. (2) The pressure-controlled immiscible displacement in uncorrelated cubic lattices (2nd length scale ~ 1?cm) is simulated as a site percolation process governed by capillary and gravity forces. At this scale, each node represents a network of the previous scale. (3) The rate-controlled immiscible displacement of water by oil in cubic networks (3rd length scale ~ 10?cm), where each node represents a lattice of the previous scale, is simulated by accounting for capillary, gravity, and viscous forces. The multi-scale approach along with the information concerning the pore structure properties of the porous medium can be employed to determine the transient responses of the pressure drop and axial distribution of water saturation, and estimate the effective (up-scaled) relative permeability functions. The method is demonstrated with application to data of highly heterogeneous soils.  相似文献   

14.
We report on results from primary drainage experiments on quasi-two-dimensional porous models. The models are transparent, allowing the displacement process and structure to be monitored in space and time during primary drainage experiments carried out at various speeds. By combining detailed information on the displacement structure with global measurements of pressure, saturation and the capillary number Ca, we obtain a scaling relation relating pressure, saturation, system size and capillary number. This scaling relation allows pressure–saturation curves for a wide range of capillary numbers to be collapsed on the same master curve. We also show that in the case of primary drainage, the dynamic effect in the capillary pressure–saturation relationship observed on partially water saturated soil samples might be explained by the combined effect of capillary pressure along the invasion front of the gaseous phase, and pressure changes caused by viscous effects in the wetting fluid phase.  相似文献   

15.
In previous works, we have described a void space reconstruction method based on non-wetting fluid intrusion, wetting fluid drainage, and image analysis data. The method has been applied to a wide range of substances, including sandstone, compressed and sintered powders, paper substrates and coatings, soil and fibrous mats. We have also demonstrated in a previous work that the spatial correlation of similarly sized voids within inhomogeneous porous media has a huge effect on permeability. We therefore describe a method of measuring such correlation, suitable for use in our void space reconstructions. The method involves a cubic spline smoothing of a variogram of the void sizes in a binary image of the porous medium. It has been successfully tested on an artificially correlated void network, comprising two sintered glass discs of different void size ranges. Stereological effects, caused by the off-centre sectioning of voids, can interfere with the variogram features. Our method is sh own to be insensitive to artificially generated stereological interference. The method is also applied to sandstone samples.  相似文献   

16.
As a typical multiphase fluid flow process, drainage in porous media is of fundamental interest both in nature and in industrial applications. During drainage processes in unsaturated soils and porous media in general, saturated regions, or clusters, in which a liquid phase fully occupies the pore space between solid grains, affect the relative permeability and effective stress of the system. Here, we experimentally study drainage processes in unsaturated granular media as a model porous system. The distribution of saturated clusters is analysed by optical imaging under different drainage conditions, with pore-scale information from Voronoi and Delaunay tessellation used to characterise the topology of saturated cluster distributions. By employing statistical analyses, we describe the observed spatial and temporal evolution of multiphase flow and fluid entrapment in granular media. Results indicate that the distributions of both the crystallised cell size and pore size are positively correlated to the spatial and temporal distribution of saturated cluster sizes. The saturated cluster size is found to follow a lognormal distribution, in which the generalised Bond number (\( Bo^{*} \)) correlates negatively to the scale parameter (μ) and positively to the shape parameter (σ). With further consideration of the total surface energy obtained based on liquid–air interfaces, we were able to include additional grain-scale information in the constitutive modelling of unsaturated soils using both the degree of saturation and generalised Bond number. These findings can be used to connect pore-scale behaviour with overall hydro-mechanical characteristics in granular systems.  相似文献   

17.
We present here a direct comparison between a slow quasi-two-dimensional pore scale drainage experiment and a two-component 2D lattice Boltzmann simulation. An experimental setup consisting of approximately 10 × 10 pores is mapped onto the 2D lattice Boltzmann model with the aspiration of reproducing the behavior and dynamics of a slow drainage process on a pore scale.  相似文献   

18.
Quasi-static rule-based network models used to calculate capillary dominated multi-phase transport properties in porous media employ equilibrium fluid saturation distributions which assume that pores are fully filled with a single bulk fluid with other fluids present only as wetting and/or spreading films. We show that for drainage dominated three-phase displacements in which a non-wetting fluid (gas) displaces a trapped intermediate fluid (residual oil) in the presence of a mobile wetting fluid (water) this assumption distorts the dynamics of three-phase displacements and results in significant volume errors for the intermediate fluid and erroneous calculations of intermediate fluid residual saturations, relative permeabilities and recoveries. The volume errors are associated with the double drainage mechanism which is responsible for the mobilization of waterflood residual oil. A simple modification of the double drainage mechanism is proposed which allows the presence of a relatively small number of partially filled pores and removes the oil volume errors.  相似文献   

19.

We predict waterflood displacement on a pore-by-pore basis using pore network modelling. The pore structure is captured by a high-resolution image. We then use an energy balance applied to images of the displacement to assign an average contact angle, and then modify the local pore-scale contact angles in the model about this mean to match the observed displacement sequence. Two waterflooding experiments on oil-wet rocks are analysed where the displacement sequence was imaged using time-resolved synchrotron imaging. In both cases the capillary pressure in the model matches the experimentally obtained values derived from the measured interfacial curvature. We then predict relative permeability for the full saturation range. Using the optimised contact angles distributed randomly in space has little effect on the predicted capillary pressures and relative permeabilities, indicating that spatial correlation in wettability is not significant in these oil-wet samples. The calibrated model can be used to predict properties outside the range of conditions considered in the experiment.

  相似文献   

20.
The critical and optimum injection rates as well as the critical fracture capillary number for an efficient displacement process are determined based on the experimental and numerical modeling of the displacement of nonwetting phase (oil) by wetting phase (water) in fractured porous media. The efficiency of the process is defined in terms of the nonwetting phase displaced from the system per amount of wetting phase injected and per time. Also, the effects of injection rate on capillary imbibition transfer dominated two-phase flow in fractured porous media are clarified by visualizing the experiments. The results reveal that as the injection rate is increased, fracture pattern begins to become an effective parameter on the matrix saturation distribution. As the rate is lowered, however, the system begins to behave like a homogeneous system showing a frontal displacement regardless the fracture configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号