首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high narrow peak of interlayer differential tunnel conductivity is observed at low temperatures in heterostructures with two closely located electronic layers in the absence of magnetic field. The analysis of experimental results suggests that this peak is due to the interlayer phase coherence that arises in the system as a result of the Bose condensation of interlayer excitons (electron-hole pairs) belonging to different layers, in accordance with the recent theoretical predictions.  相似文献   

2.
A high narrow peak in the interlayer differential tunnel conductance has been observed in heterostructures with two closely located electron layers at low temperatures. Analysis of the experimental results suggests that this peak is due to the interlayer phase coherence, which appears in the system under investigation owing to the Bose condensation of indirect excitons, i.e., pairs of electrons and holes from different layers in the absence of the magnetic field.  相似文献   

3.
We discuss the role of the Al interlayer in the suppression of pinhole formations and also look at the polarity transition of the AlN layers from N-polarity to Al-polarity when this Al interlayer is present. The AlN layers were grown by molecular beam epitaxy on an AlN nucleation layer. A thin Al interlayer was deposited on the initial nucleated AlN layer after the nitridation of the Al-soaked Si (111) substrates. The AlN layer with an Al interlayer showed a relatively smooth surface with a reduced density of pinholes compared with the AlN layer grown without an Al interlayer. In addition, the AlN layer with an Al interlayer showed some stacking faults in the interface between the Si substrate and the A1N layer. We also identify the polarity change of the AlN layer after the insertion of a thin Al interlayer from N-polarity to Al-polarity by chemical etching. A simple model is constructed to explain the polarity change and the pinhole suppression due to the Al interlayer.  相似文献   

4.
The interlayer exchange coupling in ferromagnet-semiconductor digital magnetic alloys in which monolyers (submonolayers) of transition metals are embedded into a semiconductor matrix is studied theoretically. A mechanism of an indirect exchange between ferromagnetic δ layers is proposed; it is based on the confinement of carriers in two-dimensional spin-polarized states inside the energy gap of the semiconductor. These appear due to strong potential and exchange carrier scattering by the δ layers. The interlayer exchange coupling is shown to occur through a nondegenerate semiconductor interlayer because of virtual electron excitations through an energy barrier separating these partly filled two-dimensional spin-polarized states and the edge of the bulk semiconductor band. The interlayer coupling intensity decreases exponentially with increasing distance between neighboring δ layers, and the type of this coupling can change from ferromagnetic into antiferromagnetic or vice versa as the interlayer thickness or the degree of filling the two-dimensional states increases.  相似文献   

5.
王培  王振  郑新  柳菲  陈爱  谢嘉凤  王玉婵 《发光学报》2018,39(6):809-814
基于ITO/NPB/TCTA/Ir(MDQ)2(acac):TCTA/FIrpic:TmPyPb/Ir(ppy)3:TmPyPb/TmPyPb/LiF/Al结构的三原色白光器件,通过分别在蓝光与红光、绿光发光层界面处插入2 nm TCTA与2 nm TmPyPb中间层,研究了中间层的有无对器件性能的影响。结果表明,中间层的引入可以调整激子的分布,影响能量转移。具有双中间层的器件实现了高质量的白光发射,最大发光效率达到22.56 cd/A。  相似文献   

6.
In the present paper, we consider the excitonic effects on the single particle normal density of states (DOS) in the bilayer graphene (BLG). The local interlayer Coulomb interaction is considered between the particles on the non-equivalent sublattice sites in different layers of the BLG. We show the presence of the excitonic shift of the neutrality point, even for the noninteracting layers. Furthermore, for the interacting layers, a very large asymmetry in the DOS structure is shown between the particle and hole channels. At the large values of the interlayer hopping amplitude, a large number of DOS at the Dirac’s point indicates the existence of the strong excitonic coherence effects between the layers in the BLG and the enhancement of the excitonic condensation. We have found different competing orders in the interacting BLG. Particularly, a phase transition from the hybridized excitonic insulator phase to the coherent condensate state is shown at the small values of the local interlayer Coulomb interaction.  相似文献   

7.
It is shown that the monotonic part of interlayer electronic conductivity strongly decreases in high magnetic field perpendicular to the conducting layers. Only the coherent interlayer tunneling has been considered, and the obtained result strongly contradicts the standard theory. This effect appears in very anisotropic layered quasi-two-dimensional metals, when the interlayer transfer integral is less than the Landau level separation.  相似文献   

8.
A model is proposed for exchange coupling between ferromagnetic metal layers through a nondegenerate semiconductor interlayer with point defects. The asymptotics of the exchange integrals is calculated. It is shown that the interlayer exchange can reverse sign depending on the position and occupation of impurity states in the interlayer. The results provide a qualitative explanation of the experimental data obtained for iron/silicon multilayers.  相似文献   

9.
We consider fermionic polar molecules in a bilayer geometry where they are oriented perpendicularly to the layers, which permits both low inelastic losses and superfluid pairing. The dipole-dipole interaction between molecules of different layers leads to the emergence of interlayer superfluids. The superfluid regimes range from BCS-like fermionic superfluidity with a high Tc to Bose-Einstein (quasi-)condensation of interlayer dimers, thus exhibiting a peculiar BCS-Bose-Einstein condensation crossover. We show that one can cover the entire crossover regime under current experimental conditions.  相似文献   

10.
The effect of ferromagnetic layers on the spin polarization of holes and electrons in ferromagnet-semiconductor superlattices with a fixed Mn δ-layer thickness of 0.11 nm and different GaAs interlayer thicknesses varying in the range from 2.5 to 14.4 nm and a fixed number of periods (40) is studied by means of hot-electron photoluminescence (HPL). Here, our study of the HPL demonstrates that the holes in δ-layers of (Ga,Mn)As DMS occupy predominantly the Mn acceptor impurity band. The width of the impurity band decreases with the increase of the interlayer distance. We also found that an increase in the GaAs interlayer thickness softens the magnetic properties of the ferromagnetic layers as well as reduces the carrier polarization. It is demonstrated that the hole spin polarization in the DMS layers and spin polarization of electrons in nonmagnetic GaAs are proportional to the sample magnetization.  相似文献   

11.
We explore the consequences of a rotation between graphene layers for the electronic spectrum. We derive the commensuration condition in real space and show that the interlayer electronic coupling is governed by an equivalent commensuration in reciprocal space. The larger the commensuration cell, the weaker the interlayer coupling, with exact decoupling for incommensurate rotations and in the theta-->0 limit. Furthermore, from first-principles calculations we determine that even for the smallest possible commensuration cell the decoupling is effectively perfect, and thus graphene layers will be seen to decouple for all rotation angles.  相似文献   

12.
Changes in the recombination radiation spectrum of spatially-separated electron-hole layers has been studied under variation of the in-plane magnetic field and interlayer distance. It has been found that a change in the spectral position of the luminescence line in the low-field limit is proportional to the square of the magnetic field with the proportionality coefficient depending on the interlayer distance. The observed dependence has been shown to agree with the theoretical conceptions, according to which the line shift is quadratic in the magnetic field and interlayer distance and inversely proportional to the sum of the electron and hole masses. This total mass obtained in the experiment has been found to depend on the electric field that separates the layers and may substantially differ from the expected value.  相似文献   

13.
The phase diagram and magnetizations in a transverse Ising nanoisland are examined by using the effective field theory with correlations. The nanoisland is constructed from two layers with nine atoms in each which are coupled by the interlayer coupling. We present some characteristic phenomena in them which come from the frustration induced by an interlayer coupling and two transverse fields.  相似文献   

14.
A 3D layered system of charges with logarithmic interaction parallel to the layers and random dipoles is studied via a novel variational method and an energy rationale which reproduces the known phase diagram for a single layer. Increasing interlayer coupling leads to successive transitions in which charge rods correlated in N>1 neighboring layers are nucleated by weaker disorder. For layered superconductors in the limit of only magnetic interlayer coupling, the method predicts and locates a disorder induced defect-unbinding transition in the flux lattice. While N = 1 charges dominate there, N>1 disorder induced defect rods are predicted for multilayer superconductors.  相似文献   

15.
A combination of thin- and thick-plate theories, and finite element models is used to systematically analyze folding in multilayer stacks. We show that if the interlayer spacing is large, individual layers fold as single layers, if the spacing is small the entire stack folds as one effective single layer. In between, a third folding mode exists that is characterised by a dominant wavelength that scales with n 1/3, irrespective of total number of layers, n. The maximum growth rates in the true multilayer-folding mode are higher than the corresponding single layer growth rates, increase with n and are bounded by a saturation value that is directly proportional to the viscosity contrast. This growth rate saturation as well as the applicability of the true multilayer-folding mode with respect to interlayer spacing can be explained by the normal and inverse contact strain theory. The true multilayer-folding mode is expected to be the most frequent mode in nature, because it exhibits the highest growth rates and has a relatively large applicability range with respect to interlayer spacing. The increased growth rates in multilayer folding are especially important for systems where the corresponding single layer values are not sufficient to drive the folding instability, such as folding in low-viscosity contrast layers and detachment folding.  相似文献   

16.
High-quality strain relaxed SiGe layer has been fabricated on Si using a thin Ge interlayer grown at 330 °C. The properties of SiGe layers with and without the low-temperature Ge interlayer are compared. The results indicate that the Ge interlayer plays an important role in the preparation of SiGe layer. The strain relaxed low-temperature Ge interlayer with coalesced island surface, acting as a stable and compliant template, could remove the cross-hatch misfit dislocation lines on surface and promote the strain relaxation in the SiGe layer homogeneously.  相似文献   

17.
We emphasize the importance of experiments with voltage dependent field emission energy distribution analysis in carbon nanosheets. Our analysis shows the crucial influence of the band structure on the energy distribution of field emitted electrons in few-layer graphene. In addition to the main peak we found characteristic sub-peaks in the energy distribution. Their positions strongly depend on the number of layers and the interlayer interaction. The discovery of these peaks in field emission experiments from carbon nanosheets would be a clear manifestation of the quantum size effect in these new materials.  相似文献   

18.
We study the Josephson-like interlayer tunneling signature of the strongly correlated nuT=1 quantum Hall phase in bilayer two-dimensional electron systems as a function of the layer separation, temperature, and interlayer charge imbalance. Our results offer strong evidence that a finite temperature phase transition separates the interlayer coherent phase from incoherent phases which lack strong interlayer correlations. The transition temperature is dependent on both the layer spacing and charge imbalance between the layers.  相似文献   

19.
At total Landau level filling factor nu(tot)=1 a double-layer two-dimensional electron system with small interlayer separation supports a collective state possessing spontaneous interlayer phase coherence. This state exhibits the quantized Hall effect when equal electrical currents flow in parallel through the two layers. In contrast, if the currents in the two layers are equal, but oppositely directed, both the longitudinal and Hall resistances of each layer vanish in the low-temperature limit. This finding supports the prediction that the ground state at nu(tot)=1 is an excitonic superfluid.  相似文献   

20.
Investigation has been performed on the interlayer coupling between two Co/Pt multilayers with perpendicular anisotropy separated by Cr spacers. As a function of the Cr spacer thickness, only ferromagnetic interlayer coupling has been observed between the two Co/Pt multilayers in contrast to the oscillatory interlayer coupling between ferromagnetic and antiferromagnetic observed in ferromagnetic layers with in-plane anisotropy separated by Cr spacers. It is the strength of the ferromagnetic interlayer coupling that has been observed to be oscillatory as a function of the Cr spacer thickness with a period of about 7 Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号