共查询到20条相似文献,搜索用时 93 毫秒
1.
溶剂热合成具有纳米孔结构的γ-Al2O3 总被引:2,自引:0,他引:2
0引言γ-Al2O3又称活性氧化铝,一般具有较高的比表面积,在工业生产中被广泛用作吸附剂和催化剂载体[1],尤其是可作为负载贵金属催化剂的载体[2 ̄4]。纳米级的γ-Al2O3由于颗粒粒径小而在其颗粒表面形成了丰富的失配键和欠氧键,以此制成多孔薄膜作为催化剂及催化剂载体,其性能比目前使用的同类产品性能要优越许多[5]。但纳米级的γ-Al2O3也存在一些缺点,如由于纳米颗粒的表面能较高导致了颗粒的团聚较严重,分散性较差;由于γ-Al2O3活性较高,所以其高温热稳定性不太好,这些缺点极大地限制了γ-Al2O3的应用范围。因此合成具有良好分散性和… 相似文献
2.
本文通过溶剂热法合成了2种新的有机杂化锌碲化物[Zn(dien)2](Te2)(1)和镍硒化物[Ni(dien)2](Se3)(2)(dien=二乙烯三胺),单晶X射线衍射分析结果表明,化合物1属于正交晶系,Cmca空间群,晶胞参数:a=9.212(2),b=10.854(3),c=15.723(4),Z=4。化合物2属于正交晶系,Pna21空间群,晶胞参数:a=18.047(4),b=9.8236(19),c=9.0079(19),Z=4。在两种化合物中,1的阳离子中Zn2 与2个dien螯合形成稍变形的八面体几何构型,阴离子为哑铃型的Te22-。2的阳离子中Ni2 离子与2个dien螯合形成稍变形的八面体几何构型,阴离子为‘V’字型的Se32-。 相似文献
3.
Nanoporous gamma aluminum oxide (γ-Al2O3) was synthesized by solvothermal method in the presence of AlCl3·6H2O, urea and alcohol. The calcined sample was characterized by XRD, FTIR, TEM, and Nitrogen adsorption-desorption measurement. Results show that the obtained γ-Al2O3 is well-dispersed nanoparticles with particle size of 4~7 nm and the product has nano-pore structure with a narrow pore size distribution of 5~20 nm. 相似文献
4.
利用溶剂热方法合成了一种以Tb3+离子为中心的金属有机骨架材料[Tb2(bpt)2(H2O)2]·(DMA)4.5, 并通过单晶X射线衍射(SXRD)、 粉末X射线衍射(PXRD)、 元素分析(EA)、 热重分析(TGA)、 傅里叶变换红外光谱 (FTIR)以及荧光光谱技术(FS)表征了该材料的结构与基本物理化学性质. 单晶衍射分析结果显示该材料具有包含一维直孔道的三维结构, 结构中孔道窗口尺寸约为1.23 nm×1.10 nm. 荧光分析测试结果表明该材料对Cr3+离子有荧光响应, 离子检测限低至0.22 mg/L, 同时具有良好的选择性, 在Cr3+离子的荧光检测领域具有重要的应用潜力. 相似文献
5.
6.
7.
采用溶剂热法合成了Eu^2+,Ce^3+单掺和双掺KMgF3。分析了样品的结构与形貌。结果表明,所合成的样品均为单相,颗粒粒度分布集中。测定了它们的激发和发射光谱,结果显示:在单掺Eu^2+的KMgF3中,没有观察到位于420nm附近由微量氧色心引起的宽带发射,只发现峰值位于360nm附近的锐峰线发射,说明溶剂热合成的KMgF3∶Eu中氧含量极低;在KMgF3双掺体系中由于Eu^2+和Ce^3+竞争吸收激发能,Eu^2+把能量传递给Ce^3+,存在Eu^2+→Ce^3+能量传递过程,观察到Ce^3+的较强的发射带和Eu^2+的较弱的线发射,并讨论了能量传递机理。 相似文献
8.
9.
10.
11.
在N2气保护下,采用电磁感应法制备了添加La的Bi2Te3和Bi0.5Sb1.5Te3。运用X射线粉末衍射、电感耦合等离子光谱和扫描电子显微镜对材料的物相成分和形貌进行了表征。研究了La对Bi2Te3和Bi0.5Sb1.5Te3热电材料的电导率(σ)、Seebeck系数(S)和热导率(κ)的影响。实验结果表明,添加La明显降低了2种材料的热导率,提高了热电优值(ZT),添加La的Bi0.5Sb1.5Te3的热电优值在室温超过了1。 相似文献
12.
Qi Zhang Teng Fang Feng Liu Airan Li Yehao Wu Tiejun Zhu Xinbing Zhao 《化学:亚洲杂志》2020,15(18):2775-2792
Bi2Te3‐based solid solutions, which have been widely used as thermoelectric (TE) materials for the room temperature TE refrigeration, are also the potential candidates for the power generators with medium and low‐temperature heat sources. Therefore, depending on the applications, Bi2Te3‐based materials are expected to exhibit excellent TE properties in different temperature ranges. Manipulating the point defects in Bi2Te3‐based materials is an effective and important method to realize this purpose. In this review, we focus on how to optimize the TE properties of Bi2Te3‐based TE materials in different temperature ranges by defect engineering. Our calculation results of two‐band model revel that tuning the carrier concentration and band gap, which is easily realized by defects engineering, can obtain better TE properties at different temperatures. Then, the typical paradigms about optimizing the TE properties at different temperatures for n‐type and p‐type Bi2Te3‐based ZM ingots and polycrystals are discussed in the perspective of defects engineering. This review can provide the guidance to improve the TE properties of Bi2Te3‐based materials at different temperatures by defects engineering. 相似文献
13.
14.
15.
Liu Z Liang J Li S Peng S Qian Y 《Chemistry (Weinheim an der Bergstrasse, Germany)》2004,10(3):634-640
This article describes a facile solvothermal method by using mixed solvents for the large-scale synthesis of Bi(2)S(3) nanoribbons with lengths of up to several millimeters. These nanoribbons were formed by a solvothermal reaction between Bi(III)-glycerol complexes and various sulfur sources in a mixed solution of aqueous NaOH and glycerol. HRTEM (high-resolution transmission electron microscopy) and SAED (selective-area electron diffraction) studies show that the as-synthesized nanoribbons had predominately grown along the [001] direction. The Bi(2)S(3) nanoribbons prepared by the use of different sulfur sources have a common formation process: the initial formation of NaBiS(2) polycrystals, which serve as the precursors to Bi(2)S(3), the decomposition of NaBiS(2), and the formation of Bi(2)S(3) seeds in the solution through a homogeneous nucleation process; the growth of Bi(2)S(3) nanoribbons occurs at the expense of NaBiS(2) materials. The growth mechanism of millimeter-scale nanoribbons involves a special solid-solution-solid transformation as well as an Ostwald ripening process. Some crucial factors affect nanoribbon growth, such as, solvothermal temperature, volume ratio of glycerol to water, and the concentration of NaOH; these have also been discussed. 相似文献
16.
Xiyan Li Wei Gao Prof. Hongjie Zhang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(8):2889-2894
Self‐assembled Bi2Te3 one‐dimensional nanorod bundles have been fabricated by a low‐cost and facile solvothermal method with ethylene diamine tetraacetic acid as an additive. The phase structures and morphologies of the samples were characterized by X‐ray diffraction, scanning electron microscopy, Fourier‐transform infrared spectrometry, and transmission electron microscope measurements. The growth mechanisms have been proposed based on the experimental results. The full thermoelectric properties of the nanorod bundles have been characterized and show a large improvement in the thermal conductivity attributed to phonon scattering of the nanostructures and then enhance the thermoelectric figure of merit. This work is promising for the realization of new types of highly efficient thermoelectric semiconductors by this method. 相似文献
17.
Beatriz Julián‐López Dr. Mónica Martos Dr. Natalia Ulldemolins José A. Odriozola Prof. Eloisa Cordoncillo Dr. Purificación Escribano Prof. 《Chemistry (Weinheim an der Bergstrasse, Germany)》2009,15(45):12426-12434
An easy solvothermal route has been developed to synthesize the first mesoporous Er2O3–TiO2 mixed oxide spherical particles composed of crystalline nanoplatelets, with high surface area and narrow pore size distribution. This synthetic strategy allows the preparation of materials at low temperature with interesting textural properties without the use of surfactants, as well as the control of particle size and shape. TEM and Raman analysis confirm the formation of nanocrystalline Er2O3–TiO2 mixed oxide. Mesoscopic ordered porosity is reached through the thermal decomposition of organic moieties during the synthetic process, thus leading to a template‐free methodology that can be extended to other nanostructured materials. High specific surface areas (up to 313 m2 g?1) and narrow pore size distributions are achieved in comparison to the micrometric material synthesized by the traditional sol–gel route. This study opens new perspectives in the development, by solvothermal methodologies, of multifunctional materials for advanced applications by improving the classical pyrochlore properties (magnetization, heat capacity, catalysis, conductivity, etc.). In particular, since catalytic reactions take place on the surface of catalysts, the high surface area of these materials makes them promising candidates for catalysts. Furthermore, their spherical morphology makes them appropriate for advanced technologies in, for instance, ceramic inkjet printers. 相似文献
18.
Bismuth tellurides is one of the most promising thermoelectric (TE) material candidates in low-temperature application circumstances, but the n-type thermoelectric property is relatively low compared to the p-type counterpart and still needs to be improved. Herein, we incorporated different copper selenides (CuSe, Cu3Se2 and Cu2−xSe) into a Bi2Te3 matrix to create the alloy by grinding and successive sintering to enable higher thermoelectric performance. The results demonstrated that all alloys achieved n-type TE characteristics and Bi2Te3-CuSe exhibited the best Seebeck coefficient and power factor among them. Along with the low thermal conductivity, the maximum dimensionless TE figure of merit (ZT) value of 1.64 at 573 K was delivered for Bi2Te3-CuSe alloy, which is among the best reported results in the n-type Bi2Te3-based TE materials to the best of our knowledge. The improved TE properties should be related to the co-doping process of Se and Cu. Our investigation shows a new method to enhance the performance of n-type TE materials by appropriate co-doping or alloying. 相似文献
19.
采用溶剂热合成方法,以无水乙腈、叠氮化钠和四氟硼酸钠为原料,以苯为溶剂,在温度为400℃条件下,成功合成出了硼碳氮(BCN)三元化合物.利用X射线粉末衍射(XRD)、Fourier变换红外光谱(FTIR)、透射电子显微镜(TEM)、选区电子衍射(SAED)、X射线能谱(EDS)和电子能量损失谱(EELS)对合成产物进行了表征.XRD和SAED分析表明,合成产物为六方相,晶格常数为a=0.2678nm,c=0.6639nm;TEM结果表明,合成产物中存在纳米棒和四方柱状块体BCN;EELS和EDS分析表明,产物由B,C,N三种元素组成,化学式为B0.23C0.60N0.17;FTIR分析表明样品中存在C—N,B—C和B—N键,表明B,C,N三元素之间达到了原子级化合. 相似文献