首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Significant immunological cross-reactivity of plant glycoproteins   总被引:3,自引:0,他引:3  
A C Laine  L Faye 《Electrophoresis》1988,9(12):841-844
Plant glycoproteins generally cross-react because of the presence of identical or related complex glycans which are highly immunogenic. The use of mild periodate oxidation of glycans after glycoprotein transfer from sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels to nitrocellulose membranes prior to immunodetection is a way of identifying the carbohydrate antigenic determinants of a glycoprotein as the basis for antigenic cross-reaction. Periodate oxidation can distinguish between antibodies directed against carbohydrate and against peptide antigenic determinants, the latter being unaffected by oxidation. Immunoblotting performed after periodate treatment allows the detection of common protein epitopes.  相似文献   

2.
A single step periodate oxidative binding of glycoproteins to synthetic polymeric matrices is proposed. By this procedure, the glycoprotein to be immobilized is simultaneously mixed with sodium periodate and a hydrazide-containing matrix. The carbohydrate moieties of the protein are oxidized and react with matrix. The single step reaction is faster than the commonly-used multistep procedure and it allows conjugation of minute amounts of glycoproteins to the matrix.  相似文献   

3.
The characterization of temperature- and pH-sensitive poly-N-isopropylacrylamide (poly-NIPAM) microgel particles, produced by surfactant-free emulsion polymerization, has been extensively reported. In the work described here poly(NIPAM) gel particles, cross-linked with N-N'-methylenebisacrylamide (BA), have been produced using inverse suspension polymerization. These particles have been termed "minigels" here since they are somewhat larger than conventional microgels. Results suggest that minigel particles are formed as a dilute suspension, within the aqueous dispersed (droplet) phase. The hydrodynamic diameter of the minigel particles produced in this work is 相似文献   

4.
一锅法制备pH和热敏的P(NIPAM-co-AA)高分子空心球   总被引:1,自引:0,他引:1  
基于N-异丙基丙烯酰胺(NIPAM)在高于PNIPAM的相转变温度时的沉淀聚合反应,利用在成核阶段形成的非交联的核为模板,然后在核的增长阶段加入交联剂N,N′-亚甲基双丙烯酰胺(BMA)和丙烯酸(AA)使得核周围形成一层交联的P(NIPAM-co-AA)共聚物壳层,降温至相转变温度以下使得非交联的PNIPAM核解散并自发地从交联的壳层扩散出来,得到具有温度和pH敏感性的P(NIPAM-co-AA)空心球.透射电镜结果表明该微球具有中空结构.利用光散射在不同pH值和温度条件下对该空心球进行了表征,结果表明,P(NIPAM-co-AA)空心球对pH值和温度具有良好的响应能力.  相似文献   

5.
According to our "block-copolymer-free" strategy for self-assembly of polymers, noncovalently connected micelles (NCCM) with poly(epsilon-caprolactone) (PCL) as the core and poly(acrylic acid) (PAA) as the shell in aqueous solutions were attained due to specific interactions between the component polymers. The micellar structure was then locked in by the reaction of PAA with diamine. Afterward, hollow spheres based on PAA network were obtained by either core degradation with lipase or core dissolution with dimethylformamide of the cross-linked micelles. The cavitation process was monitored by dynamic light scattering, which indicated a mass decrease and size expansion. The hollow structure is confirmed by transmission electron microscopy observations. The resultant hollow spheres are pH- and salt-responsive: there is a substantial volume increase when pH changes from acid to base, and vice versa. The volume change takes place dramatically over the pH-range from 5.8 to 7.5. Furthermore, this volume-pH-dependence is found to be completely reversible provided the effect of ionic strength is excluded. The volume change can be adjusted by changing the shell thickness and the cross-linking degree of the hollow spheres. The salt effect on the hollow sphere size depends on pH: with increasing salt concentration the size shows an increase, a decrease, and a little change in acidic, basic, and neutral media, respectively.  相似文献   

6.
This work describes the formation of water-soluble hydrophilic nanoparticles from biosynthetic poly-γ-glutamic acid (PGA). Nanoparticles were formed by cross-linking using 2,2′-(ethylenedioxy) diethylamine in the presence of water-soluble carbodiimide. The structure was determined by nuclear magnetic resonance spectroscopy and the particle size by transmission electron microscopy (TEM), size exclusion chromatography (SEC), and dynamic light-scattering (DLS) measurements. The results from TEM, SEC, and DLS reveal that the particle size depends on the ratio of cross-linking. Particle size values measured by TEM were between 20 and 90 nm. Formation of cross-linked nanoparticles results in a dramatic viscosity drop compared to the viscosity of the corresponding solution of the parent PGA. The viscosity and DLS experiments disclose an intriguing interplay between intrachain and interchain cross-linking of the polymer chains, depending on the cross-linker density and polymer concentration. The SEC measurements show that the retention time of the major portion of particles increase because of the higher cross-linking ratio. At moderate cross-linker concentration, intramolecular cross-linking is the dominant process, whereas at higher cross-linker densities, the interpolymer cross-linking plays an important role. As a result, large clusters are also formed.  相似文献   

7.
El-Shahawi MS  Al-Hashemi FA 《Talanta》1996,43(12):2037-2043
A simple and accurate extractive Spectrophotometric procedure was developed for the microdetermination of periodate and iodate in aqueous media. The determination of periodate was based upon the extraction of the ion-pair formed between the periodate and tetramethylammonium iodide at pH 4 in chloroform followed by direct Spectrophotometric measurements at 509, 358 and 288 nm. The optimum concentration range evaluated by Ringbom's plot, the molar absorptivity, the Sandell's sensitivity and the stoichiometry of the formed ion-pair were critically determined. Iodate could be determined quantitively by the proposed procedure after oxidation to periodate with potassium persulphate. The effect of the diverse ions on the determination of the periodate and/or iodate by the proposed procedures was also investigated. The application of the method for the analysis of iodate or periodate in the artificial fresh water was successfully carried out.  相似文献   

8.
Polymerizable surfactants now attract a great interest due to high potential of their practical application as components of pseudostationary phase in micellar chromatography, drug carriers, and “building blocks” for molecular design of nanoparticles and nanostructured polymer materials, for encapsulation of various biological preparations. In the present work, we have studied poly(N-acryloyl-11-aminoundecanoic acid) (cross-linked comb-like polymer). Cross-linked polymers were obtained via copolymerization of the surfactant bearing double bond in hydrophobic tail with hydrophobic bifunctional cross-linker in micellar solution. Of special interest was the comparison between cross-linked and non-cross-linked polymers and influence of alkaline medium on characteristics of these samples. Non-cross-linked polymers were obtained by hydrolysis of the cross-linked product (treating with NaOH). The mixture of cyclohexanol and dioxane (1:1 volume ratio) was used as a solvent. Detailed studies of the obtained polymers by viscometry, dynamic light scattering, flow birefringence, and equilibrium and non-equilibrium electric birefringence were performed. It was established that during cross-linking process, two types of bonds are formed (the ones inside individual molecules and between several polymer chains). It was shown that cross-linked macromolecular nanoparticles can be transformed into comb-like polymers.  相似文献   

9.
Nanopatterned cross-linked polymers are important for applications with controlled mechanical properties. Grafted linear and cross-linked polydimethylacrylamide gels on micro- and nanopatterns were created using iniferter-driven quasi-living radical polymerization combined with conventional photolithography and nanosphere lithography. Micropatterned linear polymers reproduce the expected scaling behavior at moderate grafting density. The addition of cross-linker to the polymerization solution leads to an increased tendency of early termination as determined by AFM force spectroscopy. Similarly, nanopatterned linear polymers show reduced thickness in agreement with the expected scaling relationship for nanoisland grafts that have reduced lateral confinement. The addition of cross-linker reintroduces some of the lateral confinement for the length of polymers reported here. The mechanical properties of both the micro- and nanopatterned linear as well as cross-linked polymers were analyzed using an algorithm to objectively determine the contact point in AFM force spectroscopy and two independent Hertz-based analysis approaches. The obtained Young's moduli are close to those expected for homogeneous thick polymer films and are independent of pattern size. Our results demonstrate that polymeric nanopillars with controlled elastic modulus can be fabricated using irreversible cross-linkers. They also highlight some of the factors that must be considered for successful fabrication of grafted nanopillars of defined mechanical and structural properties.  相似文献   

10.
The synthesis of novel hyperbranched carbohydrate polymers, prepared by the ring-opening multibranching polymerizations of anhydro and dianhydro sugars, is described. The hyperbranched carbohydrate polymers were formed by the cationic polymerization of 1,6-anhydro-beta-D-hexopyranose, 1,4-anhydrotetritol, 2,3-anhydrotetritol, and 1,2:5,6-dianhydro-D-mannitol. These polymerizations proceeded without gelation to produce water-soluble hyperbranched carbohydrate polymers with controlled molecular weights and narrow polydispersities. The values for the degree of branching of the polymers were in the range of 0.28-0.50. The polymerization method, which proceeds through a ring-opening reaction by a proton-transfer reaction mechanism, is a facile method leading to a spherical carbohydrate polymer with a high degree of branching.  相似文献   

11.
Effects of solution pH on the physical properties of a semidilute aqueous alginate solution without cross-linker agent and during gelation via the Ugi multicomponent condensation reaction at a fixed cross-linker concentration have been investigated. Both rheology and turbidity results on the alginate solution without cross-linker revealed enhanced associations at low pH. In the course of the cross-linker reaction, the time of gelation is shortest at pH = 3.5 and at pH values above 3.8 no gel is formed but only a viscosification of the solution is observed. The turbidity during the cross-linking reaction rises as the pH increases from 3.5 to 5. Furthermore, the initial change of the turbidity in the course of the cross-linking process is more pronounced at higher pH. The dynamic light scattering (DLS) results of the reaction mixture at pH = 4.0 (ergodic features at this condition) show that the chain relaxation is slowed down as the reaction proceeds. The effect of pH on the kinetics of the Ugi reaction is discussed.  相似文献   

12.
Reported here for the first time is the alkaline periodate oxidation of lignocelluloses for the selective isolation of cellulose nanocrystals (CNCs). With the high concentrations as a potassium salt at pH 10, periodate ions predominantly exist as dimeric orthoperiodate ions (H2I2O104?). With reduced oxidizing activity in alkaline solutions, dimeric orthoperiodate ions preferentially oxidized non‐ordered cellulose regions. The alkaline surroundings promoted the degradation of these oxidized cellulose chains by β‐alkoxy fragmentation and generated CNCs. The obtained CNCs were uniform in size and generally contained carboxy groups. Furthermore, the reaction solution could be reused after regeneration of the periodate with ozone gas. This method allows direct production of CNCs from diverse sources, in particular lignocellulosic raw materials including sawdust (European beech and Scots pine), flax, and kenaf, in addition to microcrystalline cellulose and pulp.  相似文献   

13.
Novel thermoreversible physical hydrogels formed from polymers with linear and star architectures possessing a linear poly(ethyleneimine) (PEI) backbone have been investigated. The hydrogelation occurred simply upon natural cooling of hot aqueous solutions of PEIs to room temperature. The X-ray diffraction and differential scanning calorimetry measurements for the resultant hydrogels unambiguously indicated that the hydrogelation originated from the formation of dihydrate crystalline structures of PEI. These crystalline hydrogels are structurally unique and hierarchical. Microscopic images revealed that the morphologies of the crystalline hydrogels depend on their molecular architectures. The linear PEI resulted in branched fibrous bundles organized by unit crystalline nanofibers with a width of ca. 5-7 nm. The six-armed star with benzene ring core produced fanlike fibrous bundles while the four-armed star with porphyrin core assembled into asterlike aggregates. The critical concentration of gelation (C(G)) was low (about 0.2 approximately 0.3%) and the thermoreversible gel-sol transition temperatures (T(G)) were controllable from approximately 43 to approximately 79 degrees C. The hydrogels formed in the presence of the various aqueous additives including organic solvents, hydrophilic polymers, physical cross-linker, chemical cross-linker, and base enabling modification and functionalization during synthesis. The mechanical properties of the hydrogels could be improved by chemical cross-linking of preformed hydrogels by glutaraldehyde. Physically and physical/chemical cross-linked hydrogels served as excellent template roles in biomimetic silicification, which produced silica-PEI hybrid powder or monolith constructed by nanofibers.  相似文献   

14.
高碘酸钠催化微晶纤维素的氧化   总被引:1,自引:0,他引:1  
陶芙蓉 《分子催化》2011,25(2):119-123
主要讨论了使用高碘酸钠(NaIO4)溶液氧化微晶纤维素的过程及性能,用红外光谱(IR)验证了氧化纤维素的生成;通过扫描电镜(SEM)、热重分析(TG-DSC)以及X射线衍射(XRD)对比了反应前后纤维素的变化;考察了氧化时间、氧化温度、氧化剂的浓度以及溶液的pH值对氧化纤维素的产率及醛基含量的影响;结果表明,反应前后纤维素的晶型和形貌基本没有变化,随着氧化程度的加深,氧化纤维素的热稳定性越来越差;并且随着氧化温度的提高和氧化剂浓度的增大,醛基含量相应提高,而氧化时间和pH值对醛基含量存在相对最高值。  相似文献   

15.
The kinetics of oxidation of pindolol by peroxodisulfate (PDS) in sulfuric acid and 40%(v/v) methanol + water solvent has been investigated. The pH profile of the rate constant was also investigated. It has been found that the reaction proceeds only in the pH range 0 to 4. A mechanism was proposed for the oxidation reaction; the reaction starts by the attack of peroxodisulfate (PDS) to form an indoleninic species that can rearrange into an indoxyl species. Once the indoxyl intermediate is formed, it can follow different paths leading to different products, depending on the acidity and PDS concentration. At low acid concentration, oxipindolol is formed whereas at high acid concentration dioxipindolol forms instead. Dioxipindolol can dimerize to form the indigo form of pindolol. A polar mechanism was proposed for the oxidation reaction, and the thermodynamic parameters were determined.  相似文献   

16.
This is the first light scattering study demonstrating that the size of micelles, the aggregation number, and the mobility of the core blocks of the micelles could be controlled by the length of the cross-linker in the micellar cores. The core cross-linked micelles were prepared using a poly[(4-pyridinemethoxy-methyl)styrene]-block-polystyrene (PPySt-b-PSt) diblock copolymer and perfluoroalkyl dicarboxylic acid. The PPySt-b-PSt copolymer formed the micelles in THF, a nonselective solvent, in the presence of the perfluoroalkyl dicarboxylic acid. The light scattering studies demonstrated that the micellar size and aggregation number were dependent on the chain length of the perfluoroalkyl dicarboxylic acid. Perfluoroazelaic acid produced micelles with a larger hydrodynamic radius and higher aggregation number than tetrafluorosuccinic acid. The micellization proceeded through the formation of the pyridinium carboxylate and the cross-linkage between the PPySt blocks via the dicarboxylic acid. The core cross-linked micelles were thermally stable and maintained its structure with changes in the temperature. A 1H NMR analysis revealed that the micelles prepared by perfluoroazelaic acid had more mobility of the core blocks than those by tetrafluorosuccinic acid.  相似文献   

17.
In this Article, large and uniform Ag nanoparticle-containing hybrid hydrogels were prepared by in situ reduction of Ag ions in cross-linked tapioca dialdehyde starch (DAS)-chitosan hydrogels. In the hybrid hydrogels, chitosan was chosen as a macromolecular cross-linker because of its abundant source and good biocompatibility. The hybrid hydrogel showed good water-swelling properties, which could be controlled by varying the ratio of chitosan to tapioca DAS in the hydrogel. The reductive aldehyde groups in the cross-linked hydrogels could be used to reduce Ag ions to Ag nanoparticles without any additional chemical reductants. Interestingly, by controlling the reduction conditions such as the tapioca DAS concentration, aqueous AgNO(3) concentration, reaction time, and aqueous ammonium concentration, Ag nanoparticles with different sizes and morphologies were obtained. Because of their biocompatibility, degradable constituents, mild reaction conditions, and controlled preparation of Ag nanoparticles, these tapioca DAS-chitosan/Ag nanoparticle hybrid hydrogels show promise as functional hydrogels.  相似文献   

18.
Innovative Pd0 heterogeneous catalysts were prepared upon using cross-linked, gel-type, functional acrylic polymers as the supports, along a simple route in use in our laboratories since long. The supports were obtained by polyaddition co-polymerization of N,N-dimethylacrylamide with either 2-acrylamido-2-methylpropane sulfonic acid, methacrylic acid or 4-vinylpyridine, and ethylene glycoldimethacrylate (cross-linker). The performance of these catalysts in the hydrogenation of cyclohexene, trans-methylcinnamate and 4-chloro-2-nitroanisole was compared with that of commercial Pd0/EnCat 30NP, produced by Reaxa. One of the catalysts (sulfonic resin as the support) behaved very well as far as activity, stability and selectivity are concerned. These results suggest that heterogeneous metal catalysts supported on polyaddition resins could be developed to become interesting materials for technical applications.  相似文献   

19.
In this study, stimuli-responsive nanoparticles were prepared by solution polymerization. Two synthesis routes are proposed to synthesize the particles, the monomer route and the polymer/monomer route. For the monomer route, pH and thermal sensitive nanoparticles were synthesized from acrylic acid and N-isopropylacrylamide. For the polymer/monomer route, the pH sensitive nanoparticles were synthesized from chitosan and acrylic acid. The effect of reaction time, initiator concentration and agitation rate on the particle size and the size distribution were investigated. The stimuli-responsive nanoparticles could be directly blended with other polymers to prepare stimuli-responsive functional membranes.  相似文献   

20.
Stearic acid grafted chitosan oligosaccharide (CSO-SA) with different degree of amino substitution (SD) was synthesized by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling reaction. The critical micelle concentration (CMC) of CSO-SA with different SD was about 0.06, 0.04, 0.01 mg/ml, respectively. With the increase of micelle concentration, the micelle size decreased, and the zeta potential increased. On the other hand, with the increase of SD of CSO-SA, the micelle size and zeta potential decreased due to the increased hydrophobic interaction of SA and the reduced free amino groups. To increase the stability of the micelle in vivo and controll drug release, the shells of micelles were cross-linked by glutaraldehyde. By controlling the molar ratio of CSO-SA to glutaraldehyde, the cross-linking of intra-micelle could be reached, and the nanoparticle with smaller size than that of its initial micelle was obtained. Paclitaxel was then used as model drug to incorporate into the micelles, and the surfaces of the micelles were further cross-linked by glutaraldehyde to form drug loaded and shell cross-linked nanoparticles. The effects of drug loading, SD of CSO-SA and cross-link degree on the size, zeta potential, drug entrapment efficiency and in vitro drug release behavior of micelles and its cross-linked nanoparticles were investigated. The higher drug entrapment efficiencies (above 94%) were observed in all case. The charged amounts of drug did not affect the drug release behavior. The drug release rate decreased with the increase of SD of CSO-SA and cross-link degree.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号