首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equilibrium distribution functions are obtained for boson and fermion ensembles with a limited number of particles. It is shown that the number-of-particle distribution functions in different quantum states are statistically dependent; this dependence disappears only for a large number of particles in the ensemble. The distributions are transformed into the Boltzmann distribution at a high temperature and into the Bose-Einstein and Fermi-Dirac distributions for a large number of particles in the ensemble.  相似文献   

2.
Hideo Hasegawa 《Physica A》2010,389(12):2358-2499
Recently it has been shown by the present author [H. Hasegawa, Phys. Rev. E 80 (2009) 011126] that the interpolation approximation (IA) to the generalized Bose-Einstein and Fermi-Dirac distributions yields good results in agreement with the exact ones within the O(q−1) and in high- and low-temperature limits, where (q−1) expresses the nonextensivity: the case of q=1 corresponding to the conventional quantal distributions. This paper reports applications of the IA to four nonextensive quantum subjects: (i) the black-body radiation, (ii) the Bose-Einstein condensation, (iii) the BCS superconductivity and (iv) itinerant-electron (metallic) ferromagnetism. Effects of the nonextensivity on physical quantities in these nonextensive quantum systems have been investigated. Comparisons between the calculated results and available observed data are made for the subjects (ii) and (iii). It has been pointed out that the factorization approximation (FA) which has been so far applied to many nonextensive systems, overestimates the nonextensivity and that it leads to inappropriate results for fermion systems like the subjects (iii) and (iv).  相似文献   

3.
The correspondence relations between a fermion field and a boson field in (1+1)-dimensional quantum field theory is discussed in general. Emphases have been laid on the renorinalization with respect.to an arbitrary mass parameter in boson version as well as the nonlocal property of currents in fermion version. After establishing the equivalence between the continuous chiral transformation in fermion version and the translational transformation in boson version, we are able to prove the Coleman theorem correspondingly.  相似文献   

4.
A k-dependent state has been constructed from two paris of mutually commuting Fermi-Dirac operators by replacing the Grassmann numbers in the conventional definition of a fermion coherent state. The Heisenberg time-dependent form of this state was then combined with a particular spin state to give a resultant state |G, the spin component containing a series of unknown k-dependent weights. A classical c-number field, φ(r,t), was then defined by an expectation value of the quantum field, ψ, using |G and an energy and time-dependent phase. It is demonstrated that the form of the equation of motion for φc(r,t) is identical to that for ψ.  相似文献   

5.
We introduce the boson and the fermion point processes from the elementary quantum mechanical point of view. That is, we consider quantum statistical mechanics of the canonical ensemble for a fixed number of particles which obey Bose-Einstein, Fermi-Dirac statistics, respectively, in a finite volume. Focusing on the distribution of positions of the particles, we have point processes of the fixed number of points in a bounded domain. By taking the thermodynamic limit such that the particle density converges to a finite value, the boson/fermion processes are obtained. This argument is a realization of the equivalence of ensembles, since resulting processes are considered to describe a grand canonical ensemble of points. Random point processes corresponding to para-particles of order two are discussed as an application of the formulation. Statistics of a system of composite particles at zero temperature are also considered as a model of determinantal random point processes.  相似文献   

6.
I review the concept of a disorder operator, introduced originally by Kadanoff in the context of the two-dimensional Ising model. Disorder operators acquire an expectation value in the disordered phase of the classical spin system. This concept has had applications and implications to many areas of physics ranging from quantum spin chains to gauge theories to topological phases of matter. In this paper I describe the role that disorder operators play in our understanding of ordered, disordered and topological phases of matter. The role of disorder operators, and their generalizations, and their connection with dualities in different systems, as well as with majorana fermions and parafermions, is discussed in detail. Their role in recent fermion–boson and boson–boson dualities is briefly discussed.  相似文献   

7.
Mapping of shell-model (fermion) Hamiltonians onto boson Hamiltonians which underly the interaction boson model 1–5) is investigated. A simple correspondence is defined and a sufficient condition given for shell-model Hamiltonians to simply correspond to finite hermitian boson Hamiltonians. A special case is discussed where diagonalization of a shell-model Hamiltonian for valence protons and neutrons can be exactly carried out in an equivalent (but different) boson space. If, however, the proton Hamiltonian and neutron Hamiltonian are diagonal in the seniority scheme, mapping of fermion states onto orthogonal boson states cannot be a simple correspondence. In that case the boson quadrupole operators equivalent to fermion guadrupole operators cannot be single-boson operators but must be more complicated, ones.  相似文献   

8.
We present a two-body relativistic wave equation for a system composed of a boson and a fermion. One-body equations such as the Dirac and the Klein-Gordon equations are often used as an approximate equation for relativistic two-body systems. However, when the masses of two particles are not very different, the use of one-body equations comes into question. We use the Feshbach-Villars formalism for the boson so that the wave equation can be given in the form of an eigenvalue equation for the Hamiltonian. Differences between our equation and the one-body equations are examined and illustrated in a numerical example of a two-body system with scalar and vector potentials.Communicated by: W. Weise  相似文献   

9.
We derive the equations for the non-linear effective dynamics of a so called pseudo-spinor Bose-Einstein condensate, which emerges from the linear many-body Schrödinger equation at the leading order in the number of particles. The considered system is a three-dimensional diluted gas of identical bosons with spin, possibly confined in space, and coupled with an external time-dependent magnetic field; particles also interact among themselves through a short-scale repulsive interaction. The limit of infinitely many particles is monitored in the physically relevant Gross-Pitaevskii scaling. In our main theorem, if at time zero the system is in a phase of complete condensation (at the level of the reduced one-body marginal) and with energy per particle fixed by the Gross-Pitaevskii functional, then such conditions persist also at later times, with the one-body orbital of the condensate evolving according to a system of non-linear cubic Schrödinger equations coupled among themselves through linear (Rabi) terms. The proof relies on an adaptation to the spinor setting of Pickl’s projection counting method developed for the scalar case. Quantitative rates of convergence are available, but not made explicit because evidently non-optimal. In order to substantiate the formalism and the assumptions made in the main theorem, in an introductory section we review the mathematical formalisation of modern typical experiments with pseudo-spinor condensates.  相似文献   

10.
Two concrete methods are presented for quantizing the time-dependent Hartree equations in terms of boson operators. The first is the well-known infinite boson expansion analogous to the Holstein-Primakoff representation of angular momentum operators. The second, a new development, consists of finite boson quadratic forms, and is analogous to the Schwinger representation of angular momenta. In each case, a physical boson subspace can easily be constructed within which the full fermion dynamics is exactly duplicated. It therefore follows that quantization of the time-dependent Hartree equations, including all degrees of freedom, retrieves the exact many-body problem. The discussion in this paper is limited to particle-hole excitations of an N-particle system. A generalization to one-nucleon transfer processes on the N-particle system is also given in terms of ideal odd nucleons, but this brings in infinite expansions.  相似文献   

11.
We study the problem of the mapping of fermion collective pairs onto particle-particle bosons and of different fermion operators (hamiltonian, one- and two-particle transfer operators) onto corresponding boson ones and we test the consequences of the truncation to lowest orders of these boson operators. We find that, although the lowest-order terms in the expansion of the operators in boson space lead to matrix elements between boson states which display the qualitative behaviour of the corresponding ones between fermion states, higher-order terms are required to get a quantitative agreement when a large number of particles are involved, as a direct consequence of the increased role of the Pauli principle.  相似文献   

12.
A very effective tool, namely, the analytical expression of the fractional parentage coefficients (FPC), is introduced in this paper to deal with the total spin states of N-body spinor bosonic systems, where N is supposed to be large and the spin of each boson is one. In particular, the analytical forms of the one-body and two-body FPC for the total spin states with {N} and {N−1,1} permutation symmetries have been derived. These coefficients facilitate greatly the calculation of related matrix elements, and they can be used even in the case of N→∞. They appear as a powerful tool for the establishment of an improved theory of spinor Bose-Einstein condensation, where the eigenstates have the total spin S and its Z-component being both conserved.  相似文献   

13.
The phase structure of a large N, O(N) supersymmetric model in three dimensions is studied. Of special interest is the spontaneous breaking of scale invariance which occurs at a fixed value of the coupling constant, λ0c=4π. In this phase the bosons and fermions acquire a mass while a Goldstone boson (dilaton) and Goldstone fermion (“dilatino”) are dynamically generated as massless bound states. The absence of renormalization of the dimensionless coupling constant λ0 leaves these Goldstone particles massless.  相似文献   

14.
A recent theorem states that for quantum many-body systems with short-range interactions the following property holds: the single-particle overlap functions, spectroscopic factors and separation energies of bound eigenstates of the (A ? 1)-particle system are fully determined by the one-body density matrix of the A-particle system in its ground state. We confirm this property, by explicit construction, for the case of a schematic, exactly solvable system.  相似文献   

15.
We study the collective association dynamics of a cold Fermi gas of 2N atoms in M atomic modes into a single molecular bosonic mode. When the atomic translational motion is slow compared to the atom-molecule conversion rate, the many-body fermionic problem for 2M amplitudes is effectively reduced to a dynamical system of min{NM} + 1 amplitudes, making the solution no more complex than the solution of a two-mode Bose-Einstein condensate and allowing realistic calculations with up to 104 particles. The many-body dynamics is shown to be formally similar to the dynamics of the bosonic system under the mapping of boson particles to fermion holes, producing collective enhancement effects due to many-particle constructive interference.  相似文献   

16.
A grade adjoint operation for the boson and fermion operators is considered. A graded bosonfermion algebra is constructed. Explicit expressions for the generators of the osp(2,l) and spl(2,l) superalgebras in terms of suitable pairs of graded boson and fermion operators are given. Infinite-dimensional grade star representations are obtained.  相似文献   

17.
The general solution for the S matrix of an arbitrary Hamilton system with boson and fermion first- and second-class constraints of general form is obtained. Additional diagrams arise securing unitary and gauge invariance of the theory: the many-particle interaction of fermion and boson ghosts. The generalized Ward identities are obtained.  相似文献   

18.
We present a new justification of the independent particle model for the nucleus. It is based on a statistical theory of the short-range correlations in large Fermion systems. The statistical operator of many-body Fermion systems — if averaged over a suitable ensemble — can be written as a product of statistical operators for a one-body system. The statistical operator for the one-body system obeys a Hartree-Fock equation. Physical interpretation and conclusions are discussed.  相似文献   

19.
By addition of the so-called ideal quasiparticle to the boson space one can represent the odd fermion states in that product space. In such a way one finds various representations of the fermion operators in terms of the boson operators and ideal quasiparticles. From these boson expansions of the fermion operators a finite one is selected by considering non-unitary transformations. Thus, the direct generalization, of the Dyson representation for even systems is given for the case of odd systems. The Hamiltonian can be divided into three parts: the boson term which describes the vibrational motion of the even core, the unperturbed motion of the quasiparticle, and the interaction between the quasiparticle and the bosons. This interaction consists of two terms, one of which agrees with the term used by Kisslinger and Sorensen 2), which is usually called the dynamical interaction, and the additional term is due to the antisymmetrization between the extra particle and the even core. The latter term can be identified as kinematical interaction which is responsible for the anomalous coupling states. For example, it is demonstrated that this term produces qualitatively the same splitting of the one-phonon multiplet as was obtained by Kuriyama et al. 3) for the j-shell. Furthermore, it is shown for the more complicated case of 117Sn that the effect of this additional interaction between phonons and quasiparticle is important when many shells to the states in the odd nucleus are taken into account.  相似文献   

20.
Within the Hubbard model, two boson Green’s functions that describe the propagation of collective excitations of the electronic system—magnons (states with a single electron spin flip) and doublons (states with two electrons at one site of the crystal lattice)—are calculated for a Coulomb interaction of arbitrary strength and for an arbitrary electron concentration by applying a decoupling procedure to the double-time X-operator Green’s functions. It is found that the magnon and doublon Green’s functions are similar in structure and there is a close analogy between them. Instability of the paramagnetic phase with respect to spin ordering is investigated using the magnon Green’s function, and instability of the metallic phase to charge ordering is analyzed with the help of the doublon Green’s function. Criteria for the paramagnet-ferromagnet and metal-insulator phase transitions are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号