首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We consider the periodic generalized autoregressive conditional heteroskedasticity(P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH model. Under some mild conditions, we establish the asymptotic results of proposed estimator.The Monte Carlo simulation is presented to assess the performance of proposed estimator. Numerical study results show that our proposed estimation outperforms other existing methods for heavy tailed distributions.The proposed methodology is also illustrated by Va R on stock price data.  相似文献   

2.
This article considers a semiparametric varying-coefficient partially linear regression model.The semiparametric varying-coefficient partially linear regression model which is a generalization of the partially linear regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable.A sieve M-estimation method is proposed and the asymptotic properties of the proposed estimators are discussed.Our main object is to estimate the nonparametric component and the unknown parameters simultaneously.It is easier to compute and the required computation burden is much less than the existing two-stage estimation method.Furthermore,the sieve M-estimation is robust in the presence of outliers if we choose appropriate ρ( ).Under some mild conditions,the estimators are shown to be strongly consistent;the convergence rate of the estimator for the unknown nonparametric component is obtained and the estimator for the unknown parameter is shown to be asymptotically normally distributed.Numerical experiments are carried out to investigate the performance of the proposed method.  相似文献   

3.
A new family of penalty functions, ie, adaptive to likelihood, is introduced for model selection in general regression models. It arises naturally through assuming certain types of prior distribution on the regression parameters. To study the stability properties of the penalized maximum‐likelihood estimator, 2 types of asymptotic stability are defined. Theoretical properties, including the parameter estimation consistency, model selection consistency, and asymptotic stability, are established under suitable regularity conditions. An efficient coordinate‐descent algorithm is proposed. Simulation results and real data analysis show that the proposed approach has competitive performance in comparison with the existing methods.  相似文献   

4.
On asymptotics of t-type regression estimation in multiple linear model   总被引:1,自引:0,他引:1  
We consider a robust estimator (t-type regression estimator) of multiple linear regression model by maximizing marginal likelihood of a scaled t-type error t-distribution. The marginal likelihood can also be applied to the de-correlated response when the within-subject correlation can be consistently estimated from an initial estimate of the model based on the independent working assumption. This paper shows that such a t-type estimator is consistent.  相似文献   

5.
Differenced estimators of variance bypass the estimation of regression function and thus are simple to calculate. However, there exist two problems: most differenced estimators do not achieve the asymptotic optimal rate for the mean square error; for finite samples the estimation bias is also important and not further considered. In this paper, we estimate the variance as the intercept in a linear regression with the lagged Gasser-type variance estimator as dependent variable. For the equidistant design, our estimator is not only \(n^{1/2}\)-consistent and asymptotically normal, but also achieves the optimal bound in terms of estimation variance with less asymptotic bias. Simulation studies show that our estimator has less mean square error than some existing differenced estimators, especially in the cases of immense oscillation of regression function and small-sized sample.  相似文献   

6.
Robust Depth-Weighted Wavelet for Nonparametric Regression Models   总被引:2,自引:0,他引:2  
In the nonparametric regression models, the original regression estimators including kernel estimator, Fourier series estimator and wavelet estimator are always constructed by the weighted sum of data, and the weights depend only on the distance between the design points and estimation points. As a result these estimators are not robust to the perturbations in data. In order to avoid this problem, a new nonparametric regression model, called the depth-weighted regression model, is introduced and then the depth-weighted wavelet estimation is defined. The new estimation is robust to the perturbations in data, which attains very high breakdown value close to 1/2. On the other hand, some asymptotic behaviours such as asymptotic normality are obtained. Some simulations illustrate that the proposed wavelet estimator is more robust than the original wavelet estimator and, as a price to pay for the robustness, the new method is slightly less efficient than the original method.  相似文献   

7.
The asymptotic distribution for the local linear estimator in nonparametric regression models is established under a general parametric error covariance with dependent and heterogeneously distributed regressors. A two-step estimation procedure that incorporates the parametric information in the error covariance matrix is proposed. Sufficient conditions for its asymptotic normality are given and its efficiency relative to the local linear estimator is established. We give examples of how our results are useful in some recently studied regression models. A Monte Carlo study confirms the asymptotic theory predictions and compares our estimator with some recently proposed alternative estimation procedures.  相似文献   

8.
We study the asymptotic distribution of the L1 regression estimator under general condi-tions with matrix norming and possibly non i.i.d.errors.We then introduce an appropriate bootstrap procedure to estimate the distribution of this estimator and study its asymptotic properties.It is shown that this bootstrap is consistent under suitable conditions and in other situations the bootstrap limit is a random distribution.  相似文献   

9.
This article proposes a new approach to the robust estimation of a mixed autoregressive and moving average (ARMA) model. It is based on the indirect inference method that originally was proposed for models with an intractable likelihood function. The estimation algorithm proposed is based on an auxiliary autoregressive representation whose parameters are first estimated on the observed time series and then on data simulated from the ARMA model. To simulate data the parameters of the ARMA model have to be set. By varying these we can minimize a distance between the simulation-based and the observation-based auxiliary estimate. The argument of the minimum yields then an estimator for the parameterization of the ARMA model. This simulation-based estimation procedure inherits the properties of the auxiliary model estimator. For instance, robustness is achieved with GM estimators. An essential feature of the introduced estimator, compared to existing robust estimators for ARMA models, is its theoretical tractability that allows us to show consistency and asymptotic normality. Moreover, it is possible to characterize the influence function and the breakdown point of the estimator. In a small sample Monte Carlo study it is found that the new estimator performs fairly well when compared with existing procedures. Furthermore, with two real examples, we also compare the proposed inferential method with two different approaches based on outliers detection.  相似文献   

10.
This paper studies the estimation of change point in mean and variance function of a non-parametric regression model based on kernel estimation and wavelet method. First, kernel estimation of mean function is developed and it is used to estimate the position and jump size of mean change. Second, wavelet methods are applied to derive the variance estimator which is used to estimate the location and jump size of the change point in variance. The asymptotic properties of these estimators are proved. Finally, the results from a numerical simulations and comparison study show that validate the effectiveness of our method.  相似文献   

11.
This article considers a semiparametric varying-coefficient partially linear binary regression model. The semiparametric varying-coefficient partially linear regression binary model which is a generalization of binary regression model and varying-coefficient regression model that allows one to explore the possibly nonlinear effect of a certain covariate on the response variable. A Sieve maximum likelihood estimation method is proposed and the asymptotic properties of the proposed estimators are discussed. One of our main objects is to estimate nonparametric component and the unknowen parameters simultaneously. It is easier to compute, and the required computation burden is much less than that of the existing two-stage estimation method. Under some mild conditions, the estimators are shown to be strongly consistent. The convergence rate of the estimator for the unknown smooth function is obtained, and the estimator for the unknown parameter is shown to be asymptotically efficient and normally distributed. Simulation studies are carried out to investigate the performance of the proposed method.  相似文献   

12.
A robust estimator of the regression function is proposed combining kernel methods as introduced for density estimation and robust location estimation techniques. Weak and strong consistency and asymptotic normality are shown under mild conditions on the kernel sequence. The asymptotic variance is a product from a factor depending only on the kernel and a factor similar to the asymptotic variance in robust estimation of location. The estimation is minimax robust in the sense of Huber (1964). Robust estimation of a location parameter. Ann. Math. Statist.33 73–101.  相似文献   

13.
In this paper, we propose a combined regression estimator by using a parametric estimator and a nonparametric estimator of the regression function. The asymptotic distribution of this estimator is obtained for cases where the parametric regression model is correct, incorrect, and approximately correct. These distributional results imply that the combined estimator is superior to the kernel estimator in the sense that it can never do worse than the kernel estimator in terms of convergence rate and it has the same convergence rate as the parametric estimator in the case where the parametric model is correct. Unlike the parametric estimator, the combined estimator is robust to model misspecification. In addition, we also establish the asymptotic distribution of the estimator of the weight given to the parametric estimator in constructing the combined estimator. This can be used to construct consistent tests for the parametric regression model used to form the combined estimator.  相似文献   

14.
We study the asymptotic distribution of the L 1 regression estimator under general conditions with matrix norming and possibly non i.i.d. errors. We then introduce an appropriate bootstrap procedure to estimate the distribution of this estimator and study its asymptotic properties. It is shown that this bootstrap is consistent under suitable conditions and in other situations the bootstrap limit is a random distribution. This work was supported by J.C. Bose National Fellowship, Government of India  相似文献   

15.
We consider a panel data semiparametric partially linear regression model with an unknown vector β of regression coefficients, an unknown nonparametric function g(·) for nonlinear component, and unobservable serially correlated errors. The correlated errors are modeled by a vector autoregressive process which involves a constant intraclass correlation. Applying the pilot estimators of β and g(·), we construct estimators of the autoregressive coefficients, the intraclass correlation and the error variance, and investigate their asymptotic properties. Fitting the error structure results in a new semiparametric two-step estimator of β, which is shown to be asymptotically more efficient than the usual semiparametric least squares estimator in terms of asymptotic covariance matrix. Asymptotic normality of this new estimator is established, and a consistent estimator of its asymptotic covariance matrix is presented. Furthermore, a corresponding estimator of g(·) is also provided. These results can be used to make asymptotically efficient statistical inference. Some simulation studies are conducted to illustrate the finite sample performances of these proposed estimators.  相似文献   

16.
Due to the complicated mathematical and nonlinear nature of ridge regression estimator, Liu (Linear-Unified) estimator has been received much attention as a useful method to overcome the weakness of the least square estimator, in the presence of multicollinearity. In situations where in the linear model, errors are far away from normal or the data contain some outliers, the construction of Liu estimator can be revisited using a rank-based score test, in the line of robust regression. In this paper, we define the Liu-type rank-based and restricted Liu-type rank-based estimators when a sub-space restriction on the parameter of interest holds. Accordingly, some improved estimators are defined and their asymptotic distributional properties are investigated. The conditions of superiority of the proposed estimators for the biasing parameter are given. Some numerical computations support the findings of the paper.  相似文献   

17.
The zeta distribution with regression parameters has been rarely used in statistics because of the difficulty of estimating the parameters by traditional maximum likelihood. We propose an alternative method for estimating the parameters based on an iteratively reweighted least-squares algorithm. The quadratic distance estimator (QDE) obtained is consistent, asymptotically unbiased and normally distributed; the estimate can also serve as the initial value required by an algorithm to maximize the likelihood function. We illustrate the method with a numerical example from the insurance literature; we compare the values of the estimates obtained by the quadratic distance and maximum likelihood methods and their approximate variance–covariance matrix. Finally, we calculate the bias, variance and the asymptotic efficiency of the QDE compared to the maximum likelihood estimator (MLE) for some values of the parameters.  相似文献   

18.
In this article, we develop efficient robust method for estimation of mean and covariance simultaneously for longitudinal data in regression model. Based on Cholesky decomposition for the covariance matrix and rewriting the regression model, we propose a weighted least square estimator, in which the weights are estimated under generalized empirical likelihood framework. The proposed estimator obtains high efficiency from the close connection to empirical likelihood method, and achieves robustness by bounding the weighted sum of squared residuals. Simulation study shows that, compared to existing robust estimation methods for longitudinal data, the proposed estimator has relatively high efficiency and comparable robustness. In the end, the proposed method is used to analyse a real data set.  相似文献   

19.
A robust and asymptotically unbiased extreme quantile estimator is derived from a second order Pareto-type model and its asymptotic properties are studied under suitable regularity conditions. The finite sample properties of the proposed estimator are investigated with a small simulation experiment.  相似文献   

20.
This note discusses the asymptotic distribution of two scale and location invariant estimators of two scale parameters in the multiple linear regression model. Both of these estimators need an initial estimator of the regression parameter vector. The asymptotic distribution of one of these estimators does not depend on this initial estimator. Both of these estimators are useful in the computation of scale and translation invariant adaptive estimators and M-estimators of the regression parameter vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号