首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The molecular structures of mono-substituted chlorocyclohexene are determined by gas-phase electron diffraction. The structural parameters are obtained by applying leastsquares analysis to the molecular scattering intensities. The bond distances (rg) and bond angles are: (1) 1-Cl-cyclohexene: C1C2 = 1.336 ± 0.006 Å. C2-C3 = 1.500 ± 0.009 Å, C3-C4 = 1.533 ± 0.010 Å, C4-C5 = 1.537 Å, C5-C6 = 1.527 ± 0.010 Å, C1-C6 = 1.504 ± 0.009 Å. C-Cl = 1.747 ± 0.005 Å, C-Hav = 1.138 ± 0.010 Å, ∠Cl-cc = 126.3 ± 0.5°, ∠C6C1C2 = 123.9 ± 0.8°. ∠C1C2C3= 124.6 ± 0.8°, ∠C4C3C2 = 111.8 ± 1.2° and ∠-C5C6C1 = 111.3 ± 1.1°; (2) 3-Cl-cyclohexene: C1=C2 = 1.336 Å, C2-C3 = 1.501 ± 0.010 Å, C3-C4 = 1.513 ± 0.008 Å, C4-C5 = 1.542 Å, C5-C6, = 1.516 ± 0.007 Å, C1-C6 = 1.505 ± 0.006 Å, C-C1 = 1.801 ± 0.005 Å, C-Hav = 1.120 ± 0.008 Å, ∠C6C1C2 = 123.2 ± 1.0°, ∠C1C2C3 = 124.1 ± 1.7°, ∠C5C6C1 = 113.0 ± 1.3°, ∠C2C3C4 = 112.5 ± 1.5° ∠ClC3C2 = 110.3 ± 0.8°, ∠H-C=C = 123.0 ± 3.0° and ǒH-C-C = 109.5 ± 2.0°, with a mixture of 55% axial and 45% equatorial conformers; (3) 4-Cl-cyclohexene: C1=C2 = 1.336 Å, C2-C3 = 1.507 ± 0.007 Å, C3-C4 = 1.516 ± 0.008 Å, C4-C5 = 1.544 Å, C5-C6 = 1.523 ± 0.010 Å, C1- C6 = 1-507 Å, C-Cl = 1.799 ± 0.005 Å, C-Hav = 1.116 ± 0.005 Å, ∠C6C1C2 = 123.3 ± 1.5°, ∠C5C6C1 = 113.0 ± 1.0°, ∠C2C3C4 = 112.3 ± 1.0°, ∠ClC4C3 = 110.2 ± 2.0°, ∠H-CC = 117.1 ± 4.5° and ∠H-C-C = 109.5 ± 1.0°, with a mixture of 45% axial and 55% equatorial conformers.  相似文献   

2.
The molecular structure of norbornene has been investigated in the gas phase by combining electron diffraction data with microwave spectroscopic rotational constants. The interatomic distances (rg) and bond angles were obtained by applying a least squares program to the refined experimental molecular diffraction intensities. The CC bond length was found to be 1.336 ± 0.002 Å while the
) bond length was 1. 529 ± 0.007 Å. Other bond lengths and angles included (IUPAC numbering system was used for norbornene): C1-C6 = 1.550 ± 0.020 Å, C1-C7 = 1.566± 0.005 Å, C5-C6 = 1.556 ± 0.005 Å, C-Have. = 1.103 ± 0.003 Å, ∠C1C2C4 = 95.3°. The dihedral angle between planes C1C2C3C4 and C1C6C5C4 is 110.8 ± 1.5° while that between C1C2C3C4 and C1C7C4 is 122.3°. The moments of inertia calculated from ED structure are in good agreement with microwave spectroscopic values.  相似文献   

3.
The molecular structures of gaseous tetrafluoro-p-benzoquinone (p-fluoranil) and tetramethyl-p-benzoquinone (duroquinone) have been investigated by electron diffraction. Except for the methyl group hydrogen atoms, the molecules are planar to within experimental error, but small deviations from planarity are completely compatible with the data. Values for the geometrical parameters (radistances and rα with parenthesized uncertainties of 2σ including estimated uncertainty in the electron wavelength and correlation effects, are as follows. Tetrafluoro-p-benzoquinone: D2h symmetry (assumed); r(C0) = 1.211(6) Å, r(CC) = 1.339(12) Å, r(C-C) = 1.489(5') Å, r(C-F) = 1.323(5) Å, ∠C-C-C = 116.8(7)° and ∠C-C-F = 116.1(7)°. Tetramethyl-p-benzoquinone: C2h symmetry (assumed);r(C-H) = 1.102(18) Å, r(CO) = 1.229(8) Å, r(CC) = 1.352(8) Å, r(Csp2-Csp2) = 1.491(11) Å, r(Csp2-Csp3) = 1.504(12) A, ∠C-CO-C = 120.8(8)°. ∠C-C-CH3 = 116.1(8)°, ∠C-C-H = 110.5(34)° and α1 = α2 (methyl torsion = 30° (assumed).  相似文献   

4.
The structures of tetrachloro-p-benzoquinone and tetrachloro-o-benzoquinone (p- and o-chloranil) have been investigated by gas electron diffraction. The ring distances are slightly larger and the carbonyl bonds slightly smaller than in the corresponding unsubstituted quinones. The molecules are planar to within experimental error, but small deviations from planarity such as those found for the para compound in the crystal are completely compatible with the data. Values for the geometrical parameters (ra distances and bond angles) and for some of the more important amplitudes (l) with parenthesized uncertainties of 2σ including estimated systematic error and correlation effects are as follows. Tetrachloro-p-benzoquinone: D2h symmetry (assumed); r(CO) = 1.216 Å(4), r(CC) = 1.353 Å(6), r(C-C) = 1.492 Å(3), r(C-Cl) = 1.701 Å(3), ∠C-C-C = 117.1° (7), ∠CC-C1 = 122.7° (2), l(CO)= 0.037 Å(5), l(CC) = l(C-C) - 0.008 Å(assumed) = 0.049 Å(7), and l(C-Cl) = 0.054 Å(3). Tetrachloro-o-benzoquinone: C2v symmetry (assumed); r(CO) = 1.205 Å(5), r(CC) = 1.354 Å(9), r(Ccl-Ccl) = 1.478 Å(28), r(Co-Ccl) = 1.483 Å(24), r(Co-Co) = 1.526 Å(2), r(C-Cl)= 1.705 Å(3), <Co-CO = 121.0° (22), ∠C-C-C = 117.2° (9), ∠Cco, ClC-Cl = 118.9° (22), ∠Cccl, ClC-Cl = 122.2°(12), l(CO) = 0.039 Å(5), and l(Ccl-Ccl) = l(Co-Ccl) = l( Co-Co) = l(CC) + 0.060 Å(equalities assumed) = 0.055 Å(9). Vibrational'shortenings (shrinkages) of a few of the long non-bond distances have also been measured.  相似文献   

5.
The molecular structure of gaseous dichloromaleic anhydride has been investigated by electron diffraction at a nozzle-tip temperature of 164–170°C. The molecule is planar to within experimental error, but small deviations from planarity corresponding to torsion up to about 10° around the carbon-carbon single bonds cannot be ruled out. Values of the more important rα distances and angles with estimated 2σ uncertainties are r(CO) = 1.188(2) Å, r(CC) = 1.332(5) Å, r(C-O) = 1.389(3) Å, r(C—C) = 1.495(3) Å, r(C—Cl) = 1.685(2) Å, ∠CC-Cl = 129.4(2)°, ∠C-CO = 128.5(4)° and ∠CC—C = 107.9(2)°. The shortening of the carbonyl bond relative to that in maleic anhydride itself is discussed in terms of a possible general effect of vicinal substitution.  相似文献   

6.
The molecular structure of trifluoroethene was determined from electron diffraction data and the microwave rotational constants of the parent and deuterated molecule, corrected for zero-point vibrational motion. A GVFF adjusted to fit the vibrational frequencies was used for the correction. The molecule was found to be planar. Assuming equal geminal C1—F bond lengths, the following rg distances and rav angles are found: C1—F = 1.316 ± 0.011 Å, C2—F = 1.342 ± 0.024 Å, CC = 1.341 ± 0.012 Å, C—H = 1.100 ± 0.02 Å, ∠C—C—F1 = 123.1 ± 1.5°. ∠C—C—F2 = 124.0 ± 0.6°, ∠C—C—F3 = 120 ± 0.7° (Fl trans to F3) and ∠C—C—H = 124.0 ± 1.7°.The error limits include 3σ (σ = estimated standard deviation) and estimates of the systematic errors. The analysis suggests that all the C1—F distances are not equivalent, neither are the C2—C1—F angles, though the differences are not significant (10% level).  相似文献   

7.
The structure of 1,1-difluoroethylene was determined, from gas phase electron diffraction data obtained independently in Leiden and Tokyo and the rotational constants of F2CCH2, F2CCHD and F2CCD2 derived from the microwave study by Chauffoureaux. The two electron diffraction data agreed without significant discrepancy. From a joint least squares analysis of the diffraction and microwave data, the following rg bond distances and rz bond angles were derived: CC = 1.340 ± 0.006 Å, C-F = 1.315 ± 0.003 Å, C-H = 1.091 ± 0.010 Å, ∠C-C-F = 124.7 ± 0.3°, ∠C-C-H = 119.0 ± 0.4°, where the uncertainties represent estimated limits of error.  相似文献   

8.
The molecular structures of C2F5H and C2H5F have been studied using gas-phase electron diffraction data collected on the Balzers KDG2 instrument. The following values for the main independent geometrical parameters were obtained (ra values with e.s.d. in parentheses): in C2F5H, C-C = 1.525(4) Å, C-F(CHF2) = 1.347 Å, C-F(CF3) = 1.327 Å [C-F(av.) = 1.335(2) Å], ∠CCF(av.) = 110.0(2)°; in C2H5F, C-C = 1.502(5) Å, C-F = 1.397(4) Å, C-H = 1.097(2) Å. ∠CCF = 110.4(2)°, ∠CCH(av.) = 113.6(4)°. Evidence is presented to show that the electron diffraction data for C2H5F are not compatible with values for the bond angles deduced spectroscopically.  相似文献   

9.
The molecular structure of tetravinylsilane has been studied by gas-phase electron diffraction. The radial distribution curve suggests the absence of conformers having vinyl double bonds staggered with respect to the SiC4 skeleton. Of the eclipsed or approximately-eclipsed conformers, the one with S4 symmetry gives the best fit with experiment, although a small admixture of a C1 conformation cannot be ruled out. Least-squares refinement gave the following values for the independent structural parameters (lengths, ra basis; angles, rα basis): C-H = 1.118 ± 0.003 Å, CC = 1.355 ± 0.002 Å, Si-C = 1.855 ±0.002 Å, ∠SiCC = 124.0 ± 0.3°, ∠SiCH = 118.4 ± 1.0°, torsion angles CSiCC are 17.5 ± 0.6° from the eclipsed conformation. During the refinement the vibrational amplitudes u and perpendicular amplitude corrections K were held constant at calculated values. The CC bond length provides evidence of interaction between the vinyl π-bonds and the vacant d-orbitals of silicon.  相似文献   

10.
The molecular structure and conformation of 2,3-dichloro-1-propene have been determined by gas-phase electron diffraction at nozzle temperatures of 24, 90 and 273°C. The molecules exist as a mixture of two conformers with the chlorine atoms anti (torsion angle ∠φ = 0°) or gauche (∠φ = 109°) to each other and with the anti form the more stable. The composition (mole fraction) of the vapor with uncertainties estimated at 2σ was found to be 0.55 (0.08), 0.49 (0.08) and 0.41 (0.10) at 24, 90 and 273°, respectively. These values correspond to an energy difference with estimated standard deviation ΔE° = E°g-E°a = 0.7 ± 0.3 kcal mol?1 and an entropy difference ΔS° = S°g-S°a = 0.6 ± 0.9 cal mol?1 K?1. Some of the diffraction results, together with spectroscopic observations, permit the evaluation of an approximate torsional potential function of the form 2V = V1 (1 - cos φ) + V2 (1 - cos 2φ) + V3 (1 - cos 3φ); the results are V1 = 4.4 ± 0.5, V2 = ?2.9 ± 0.5 and V3 = 4.8 ± 0.2, all in kcal mol?1. The results at 24°C for the distance (ra) and angle (∠α) parameters, with estimated uncertainties of 2σ, are: r(Csp2-H) = 1.098(0.020)Å, r(Csp3-H) = 1.103(0.020)Å, r(CC) = 1.334(0.009)Å, r(C-C) = 1.504(0.013)Å, r(Csp2-Cl) = 1.752(0.021)Å, r(Csp3-Cl) = 1.776(0.020)Å, ∠C-CC = 127.6(1.1)°, ∠Csp3-Csp2-Cl = 110.2(1.0), ∠Csp2-Csp3-Cl = 113.1(1.2)°, ∠H-Csp3-H = 109.5° (assumed), ∠CC-H = 120.0° (assumed) and ∠φ = 108.9(3.4)°.  相似文献   

11.
The parent hydrocarbon, Dewar-benzene, has been studied by gas phase electron diffraction analysis. Assignment of C2v symmetry gave excellent agreement between the experimental and theoretical data. The structural parameters obtained were in good agreement with previous electron diffraction structures of substituted derivatives of the Dewar-benzene series. The structural parameters with error limits are (cf. Fig. 2): r(C3-C6) = 1.574 ± 0.005 Å r(C2-C3) = 1.524 ± 0.002 Å, r(C1-C2) = 1.345 ± 0.001 Å, r(C3-C9) = 1.134 ± 0.004 Å, r(C1-C7) = 1.124 ± 0.004 Å, ∠C1C6C5 = 116.7 ± 0.6°, ∠C3C6C1 = 85.7 ± 0.2°, ∠C6C3C9 = 108.0 ± 3.0°, ∠C3C2C8 = 126.7 ± 2.5°, and α = 117.25 ± 0.6°. The angle γ was assumed to be 0°.  相似文献   

12.
The gas phase molecular structure of 2,3-dimethyl-2-butene has been investigated by the electron, diffraction technique. The following structural parameters (ra structure) have been obtained: CC = 1.336±0.004 Å; C-C = 1.505±0.002 Å; C-H = 1.092±0.003 Å; ∠CC-C = 123.4±0.4°; ∠C-C-H = 110.5±0.7°; methyl torsional angle CC-C-H = 31±3°. If local C3v symmetry is assumed then a twist of 13 ±4° of the carbon skeleton is observed. This twist reduces to virtually 0° if no local symmetry is imposed on the methyl group. The twisted structure is in good agreement with that obtained by valence force-field calculations.  相似文献   

13.
The structure and conformation of dichloroacetyl chloride have been determined by gas-phase electron diffraction at nozzle temperatures of 20 and 119°C. The molecules exist as a mixture of two conformers with the hydrogen and oxygen atoms syn and gauche to each other. The composition (mole fraction of syn form) of the vapor was found to be 0.72 ± 0.06 and 0.73 ± 0.12 at 20 and 119°C, respectively, corresponding to almost equal energy for the two forms. The results for the distance (rg), angle ∠α and r.m.s. amplitude (l) parameters obtained at the two temperatures are entirely consistent. At 20°C the more important parameters, with estimated uncertainties of 3σ are: r(C-H) = 1.062(0.049)Å, r(C0) = 1.189(0.003)Å, r(C-C) = 1.535(0.008)Å, r(CO-Cl) = 1.752 (0.009)Å, r(CHCl-Cl) = 1.771(0.004)Å, ∠C-CO = 123.3(1.3)°, ∠C-CO-Cl = 113.9 (5.9)°, ∠C-CHCl—Cl = 109.5(1.5)°, ∠C1-C-Cl = 111.7(0.5)°, ∠Cl-C-H = 108.0(1.5), φ1 (HCCO torsion angle in the syn conformer) = 0.0° (assumed), φ2 (HCCO torsion angle in the gauche conformer) = 138.2(5.1)°.  相似文献   

14.
Vapor-phase molecules of C5H5As were found, assuming C2v symmetry, to have the following structure parameters and uncertainties (2.5σ): rg(C-As)= 1.850 ± 0.003 Å, rg(C2–C3) = 1.390 ± 0.032 /rA, rg(C3–C4) = 1.401 ± 0.032 /rA, rg(C-Cave) = 1.3954 ± 0.002 Å, ∠CAsC = 97.3 ± 1.7°, ∠AsCC = 125.1 ± 2.8°, and ∠C3C3C4 = 124.2 ± 2.9°. Amplitudes of vibration were also determined. Auxiliary information is more restrictive than pure electron diffraction intensities as evidence that the molecule is rigorously planar. Structural characteristics of arsabenzene reinforce prior indications that the heterocyclic molecule is genuinely aromatic.  相似文献   

15.
2-Chloro-3-fluoro-1-propene has been studied by electron diffraction, and the molecule was found to exist in equilibrium between a syn and a gauche conformation, with the syn conformation as the most stable. The most important structure parameters with standard deviation are: rg(CC) = 1.338(6) Å,rg(C—C) = 1.505(5) Å, rg(C—F) = 1.378(4) Å, rg(C-Cl) = 1.743(3) Å, ∠CC—Cl = 123.0(7)°, ∠CC—C = 125.6(6)° and ∠C—C—F = 111.2(8)°.A force field was determined by a least-squares refinement to vibrational frequencies. Mean square amplitudes of vibration and perpendicular amplitude correction coefficients have been calculated. The mean square amplitudes of vibration from the electron diffraction data are in very good agreement with the values calculated from the spectroscopic data.  相似文献   

16.
Hexafluoro-Dewar-benzene has been studied by the electron-diffraction method. A model with C2v symmetry gives excellent agreement between experimental and theoretical data. The structural parameters with error limits are (cf. Fig. 1): r(C1-C4)= 1.598 ±0.017 Å, r(C1-C2) = 1.505 ±0.005 Å, r(C2-C3) = 1.366 ± 0.015 Å, r(C1-F1) = 1.328±0.015 Å, r(C2-F2) = 1.319±0.007 Å, ∠F1C1C4 = 118.7±0.7°, ∠F2C2C3 = 133.6±0.7°, τ= 121.8±2.0°, and δ = -7.5±2.0°. Molecular orbital calculations by the CNDO/2 method gave τ = 119.8° and δ = ?4.2°.  相似文献   

17.
The structural parameters of the completely relaxed 4–21G ab initio geometries of more than 30 basic organic compounds are compared to experimental results. Some ranges for systematic empirical corrections, which relate 4–21G bond distances to experimental parameters, are associated with total energy increments. In general, for the currently feasible comparisons, the following corrections can be given which relate calculated distances to experimental rg parameters and calculated angles to rs-structures For CC single bond distances, deviations between calculated and observed parameters (rg) are in the ranges of ?0.006(2) to ?0.010(2) Å for normal or unstrained hydrocarbons; ?0.011(3) to ?0.016(3) Å for cyclobutane type compounds; and +0.001(5) to +0.004(4) Å for CH3 conjugated with CO. For CO single bonds the ranges are ?0.006(9) to +0.002(3) Å for CO conjugated with CO; and ?0.019(3) to ?0.027(9) Å for aliphatic and ether compounds. A very large and exceptional discrepancy exists for the highly strained ethylene oxide, rsre = ?0.049(5) Å and in CH3OCH3 and C2H5OCH3 the rsre differences are ?0.029(5), ?0.040(10) and ?0.025(10) Å. Some of these discrepancies may also be due to deficiencies of the microwave substitution method caused by atomic coordinates close to inertial planes. For CN bonds, two types of NCH3 corrections are from +0.005(6) to ?0.006(6) and from ?0.009(2) to ?0.014(6) Å; and the range for NCO is +0.012(3) to +0.028(4) Å. For isolated CC double bonds the range is + 0.025(2) to +0.028(2) Å. For conjugated CC double bonds the correction is less positive (+0.014(1) Å for benzene). For CO double bonds the corrections are ?0.004(3) to +0.003(3) Å. For bond angles of type HCH, CCH, CCC, CCO, CCO, OCO, NCO and CCC the corrections are of the order of magnitude about 1–2° (or better). Angles centered at heteroatoms are less accurate than that, when hydrogen atoms are involved. Differences in HOC and NHC angles were found in a range of ?2.3(5)° to ?6.2(4)°.  相似文献   

18.
The structures of isobutene and 2,3-dimethyl-2-butene have been studied by gas electron diffraction. For isobutene the rotational constants obtained by Laurie by microwave spectroscopy have also been taken into account. Leastsquares analyses have given the following rg bond distances and valence angles (rav for isobutene and rα for dimethylbutene): for isobutene, r(CC) = 1.342±0.003 Å, r(C-C)= 1.508±0.002Å, r(C-H, methyl) = 1.119±0.007 Å, r(C-H, methylene) = 1.095±0.020 Å, ∠(C-CC) = 122.2±0.2°, ∠(H-C-H) = 107.9±0.8°, and ∠(C-C-H) 121.3±1.5°; for dimethylbutene, r(CC)= 1.353 ±0.004 Å, r(C-C) = 1.511±0.002 Å, r(C-H) = 1.118± 0.004 Å, ∠(C-CC)= 123.9±0.5°, and ∠(H-C-H)= 107.0±1.0°, where the uncertainties represent estimated limits of experimental error. The bond distances and valence angles in these molecules and in related molecules are compared with one another. The CC and C-C bond distances increase almost regularly with the number of methyl groups, and the C-C bonds in isobutene and dimethylbutene are shorter than those in acetaldehyde and acetone by about 0.01 Å. Systematic variations in the C-CC angles suggest the steric influence of methyl groups.  相似文献   

19.
Bromoacetyl chloride and bromoacetyl bromide are studied by gas phase electron diffraction at nozzle-tip temperatures of 70°C and 77°C, respectively. Both compounds exist as mixtures of anti and gauche conformers. The mole fraction anti, with uncertainties estimated at , was found to be 0.474(0.080) for bromoacetyl chloride and 0.615(0.069) for bromoacetyl bromide. The results for the distance (ra)and angle (∠α) parameters, with parenthesized uncertainties of 2σ including estimated uncertainty in the electron wave length and correlation effects are as follows: (1) bromoacetyl chloride, r(C-H) = 1.086(0.062) Å, r(CO) = 1.188(0.009) Å, r(C-C) = 1.519(0.018) Å, r(C-Cl) = 1.789(0.011) Å, r(C-Br) = 1.935(0.012) Å, ∠C-CO = 127.6(1.3)°, ∠C-C-Cl = 111.3(1.1)°, ∠C-C-Br = 111.0(1.5)°, ∠H-C-H = 109.5°(assumed), \?/o (gauche torsion angle relative to 0° for the anti form) = 110.0°(assumed); (2) bromoacetyl bromide, r(C-H) =1.110(0.088) Å, r(C=O) = 1.175(0.013) Å, r(C-C) = 1.513(0.020) Å, r(CO-Br) = 1.987(0.020) Å, r(CH2-Br) = 1.915(0.020) Å, ∠C-CO = 129.4(1.7)°, ∠CH2-CO-Br = 110.7(1.5)°, ∠CO-CH2-Br = 111.7(1.8)°, ∠H-C-H = 109.5°(assumed), ∠ø (gauche torsion angle relative to 0° for the anti form) = 105.0°(assumed). The structural results are discussed in connection with the structures of related molecules.  相似文献   

20.
The molecular structure and conformation of cis-1,3-dichloro-1-propene have been determined by gas phase electron diffraction at a nozzle temperature of 90°C. The molecule exists in a form in which the chlorine atom of the methyl group and the carbon-carbon double bond are gauche to one another. The results for the distance (rg) and angle (∠α) parameters are: r(C-H) = 1.078(10)Å, r(CC) = 1.340(5)Å, r(C-C) = 1.508(7)Å, r( =C-Cl) = 1.762(3)Å, r(C-Cl) = 1.806(3)Å, ∠Cl-C-C = 111.7°(1.8), ∠(CC-C) = 125.5°(1.5), ∠Cl-CC = 124.6°(1.6) and ∠H-C-Cl = 111°(5). The torsion-sensitive distances close to the gauche form can be approximated using a dynamic model with a quartic double minimum potential function of the form V(Φ) = V0[1 + (ΦΦ04 - 2(ΦΦ0)2], where Vo = 1.1(8) kcal mol?1 and Φ0 = 56°(5) (Φ = 0 corresponds to the anti form).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号