首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
In this work, the morphology, phase composition, and corrosion properties of microarc oxidized (MAO) gas tungsten arc (GTA) weldments of AZ31 alloy were investigated. Autogenous gas tungsten arc welds were made as full penetration bead-on-plate welding under the alternating-current mode. A uniform oxide layer was developed on the surface of the specimens with MAO treatment in silicate-based alkaline electrolytes for different oxidation times. The corrosion behavior of the samples was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy. The oxide film improved the corrosion resistance substantially compared to the uncoated specimens. The sample coated for 10 min exhibited better corrosion properties. The corrosion resistance of the coatings was concluded to strongly depend on the morphology, whereas the phase composition and thickness were concluded to only slightly affect the corrosion resistance.  相似文献   

2.
Cold-rolled 2024-T3 sheet alloy was subjected to bobbin-tool friction stir welding (BTFSW). The microstructural characteristics and mechanical properties of the nugget zone in the as-welded state were investigated. The results show that the equiaxed grain size of BTFSW 2024-T3 alloy decreases from 7.6 to 2.8 μm as the welding speed is increased from 80 to 120 mm/min; in addition, fine grains are generated in the nugget zone and the size distribution is non-uniform. All Al2CuMg (S') precipitates dissolve into the Al matrix, whereas Mn-rich phases confirmed as T phases (Al20Cu2Mn3, Al6Mn, or Al3Mn) remain unchanged. The optimized parameters for BTFSW are verified as the rotation speed of 350 r/min and the travel speed of 100 mm/min. The variations in precipitation and dislocation play more important roles than grain size in the nugget zone with respect to influencing the mechanical properties during the BTFSW process. After the BTFSW process, the fracture mode of base material 2024-T3 alloy transforms from ductile rupture to ductile-brittle mixed fracture.  相似文献   

3.
This work addresses the alloying of titanium aluminides used in aircraft engine applications and automobiles. The oxidation resistance behavior of two titanium aluminides of α2 + γ(Ti3Al + TiAl) and orthorhombic Ti2NbAl, recognized as candidates for high-temperature applications, was investigated by exposure of the alloys for 100 h in air. Thus, oxidation resistance was expressed as the mass gain rate, whereas surface aspects were analyzed using scanning electron microscopy in conjunction with energy-dispersive X-ray spectroscopy, and the type of oxidation products was analyzed by X-ray diffraction and Raman spectroscopy. The orthorhombic Ti2NbAl alloy was embrittled, and pores and microcracks were formed as a result of oxygen diffusion through the external oxide layer formed during thermal oxidation for 100 h.  相似文献   

4.
The influence of Nd addition on the glass-forming ability (GFA), microhardness, and corrosion resistance of Mg60-xCu40Ndx (x=5, 10, 15, 20, and 25, at%) alloys were investigated by differential scanning calorimetry, Vickers-type hardness tests, and electrochemical methods. The results suggest that the GFA and microhardness of the amorphous alloys increase until the Nd content reaches 20at%. The corrosion potential and corrosion current density obtained from the Tafel curves indicate that the Mg35Cu40Nd25 ternary alloy exhibits the best corrosion resistance among the investigated alloys. Notably, nanoporous copper (NPC) was synthesized through a single-step dealloying of Mg60-xCu40Ndx (x=5, 10, 15, 20, and 25) ternary alloys in 0.04 mol·L-1 H2SO4 solution under free corrosion conditions. The influence of dealloying process parameters, such as dealloying time and temperature, on the microstructure of the ribbons was also studied using the surface diffusivity theory. The formation mechanism of dealloyed samples with a multilayered structure was also discussed.  相似文献   

5.
A biodegradable Zn alloy, Zn–1.6Mg, with the potential medical applications as a promising coating material for steel components was studied in this work. The alloy was prepared by three different procedures: gravity casting, hot extrusion, and a combination of rapid solidification and hot extrusion. The samples prepared were characterized by light microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. Vickers hardness, tensile, and compressive tests were performed to determine the samples’ mechanical properties. Structural examination reveals that the average grain sizes of samples prepared by gravity casting, hot extrusion, and rapid solidification followed by hot extrusion are 35.0, 9.7, and 2.1 μm, respectively. The micrograined sample with the finest grain size exhibits the highest hardness (Hv = 122 MPa), compressive yield strength (382 MPa), tensile yield strength (332 MPa), ultimate tensile strength (370 MPa), and elongation (9%). This sample also demonstrates the lowest work hardening in tension and temporary softening in compression among the prepared samples. The mechanical behavior of the samples is discussed in relation to the structural characteristics, Hall–Petch relationship, and deformation mechanisms in fine-grained hexagonal-close-packed metals.  相似文献   

6.
In order to improve the anti-oxidation of C/C composites, a SiC–MoSi2multi-phase coating for SiC coated carbon/carbon composites(C/C)was prepared by low pressure chemical vapor deposition(LPCVD) using methyltrichlorosilane(MTS) as precursor, combined with slurry painting from MoSi2 powder. The phase composition and morphology were analyzed by scanning electron microscope(SEM) and X-ray diffraction(XRD) methods, and the deposition mechanism was discussed. The isothermal oxidation and thermal shock resistance were investigated in a furnace containing air environment at 1500 1C. The results show that the as-prepared SiC–MoSi2coating consists of MoSi2 particles as a dispersing phase and CVD–SiC as a continuous phase. The weight loss of the coated samples is 1.51% after oxidation at 1500 1C for 90 h, and 4.79% after 30 thermal cycles between 1500 1C and room temperature. The penetrable cracks and cavities in the coating served as the diffusion channel of oxygen, resulted in the oxidation of C/C composites, and led to the weight loss in oxidation.  相似文献   

7.
An Fe–44Ni nanocrystalline (NC) alloy thin film was prepared through electrodeposition. The relation between the microstructure and corrosion behavior of the NC film was investigated using electrochemical methods and chemical analysis approaches. The results show that the NC film is composed of a face-centered cubic phase (γ-(Fe,Ni)) and a body-centered cubic phase (α-(Fe,Ni)) when it is annealed at temperatures less than 400℃. The corrosion resistance increases with the increase in grain size, and the corresponding corrosion process is controlled by oxygen reduction. The NC films annealed at 500℃ and 600℃ do not exhibit the same pattern, although their grain sizes are considerably large. This result is attributed to the existence of an anodic phase, Fe0.947Ni0.054, in these films. Under this condition, the related corrosion process is synthetically controlled by anodic dissolution and depolarization.  相似文献   

8.
Dissimilar joints comprised of copper-nickel and steel alloys are a challenge for manufacturers in modern industries, as these metals are not thermomechanically or chemically well matched. The present study investigated the effects of tool rotational speed and linear speed on the microstructure and mechanical properties of friction stir-welded C71000 copper-nickel and 340 stainless steel alloys using a tungsten carbide tool with a cylindrical pin. The results indicated that a rotational-to-linear speed ratio of 12.5 r/mm did not cause any macro defects, whereas some tunneling defects and longitudinal cracks were found at other ratios that were lower and higher. Furthermore, chromium carbide was formed on the grain boundaries of the 304 stainless steel near the shoulder zone and inside the joint zone, directing carbon and chromium penetration toward the grain boundaries. Tensile strength and elongation percentages were 84% and 65% of the corresponding values in the copper-nickel base metal, respectively.  相似文献   

9.
Plasma surface alloying of element Nb in TiAl-based alloys and the oxidation behavior were studied. The composition and microstructure of the surface alloyed layers were investigated by means of scanning electron microscopy (SEM),energy dispersive X-ray analysis (EDX),and X-ray diffraction (XRD). The experimental results indicate that the diffusion layers are formed on the TiAl substrate during the plasma niobizing process. The result from oxidation resistance investigation shows that plasma niobizing greatly improves the oxidation resistance of TiAl compared with the untreated TiAl. The role of element Nb for improving the oxidation resistance is considered to be achieved by strengthening the activity of Al,which is induced by the plasma niobizing process.  相似文献   

10.
The oxidation behavior of a nickel-based superalloy at 1000℃ in air was investigated through X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy analysis. A series of oxides, including external oxide scales (Cr2O3, (TiO2 + MnCr2O4)) and internal oxides (Al2O3,TiN), were formed on the surface or sub-surface of the substrate at 1000℃ in experimental still air. The oxidation resistance of the alloy was dependent on the stability of the surface oxide layer. The continuity and density of the protective Cr2O3 scale were affected by minor alloying elements such as Ti and Mn. The outermost oxide scale was composed of TiO2 rutile and MnCr2O4 spinel, and the growth of TiO2 particles was controlled by the outer diffusion of Ti ions through the pre-existing oxide layer. Severe internal oxidation occurred beneath the external oxide scale, consuming Al and Ti of the strength phase γ' (Ni3(Al,Ti)) and thereby severely deteriorating the surface mechanical properties. The depth of the internal oxidation region was approximately 35 μm after exposure to experimental air at 1000℃ for 80 h.  相似文献   

11.
An AlCoCuCrFeNiTi high-entropy alloy(HEA) was prepared by mechanical alloying and sintering to study the effect of Ti addition to the widely studied AlCoCuCrFeNi system. The structural and microstructural characteristics were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The formation of four micrometric phases was detected: a Cu-rich phase with a face-centered cubic(fcc) structure, a body-centered cubic(bcc) solid solution with Cu-rich plate-like precipitates(fcc), an ordered bcc phase, and a tetragonal structure. The XRD patterns corroborate the presence of a mixture of bcc-, fcc-, and tetragonal-structured phases. The Vickers hardness of the alloy under study was more than twice that of the AlCoCuCrFeNi alloy. Nanoindentation tests were performed to evaluate the mechanical response of the individual phases to elucidate the relationship between chemical composition, crystal structure, and mechanical performance of the multiphase microstructure of the AlCoCuCrFeNiTi HEA.  相似文献   

12.
Equi-atomic and non equi-atomic multi-component systems were synthesized through different routes to form high-entropy single solid solution. One such high-entropy alloy(HEA) with hexanary composition AlCoCrCuFeZn_x was synthesized using mechanical alloying. The effect of zinc variation on the crystal structure and phase formation was characterized using XRD, FESEM with EDS and TEM. The synthesis resulted in both equi-atomic and non equi-atomic nano crystalline AlCoCrCuFeZn with a crystallite size less than 10 nm.  相似文献   

13.
High entropy alloys(HEAs) with adjustable composition and diverse surface active sites show good catalytic performance of methanol oxidation reaction(MOR). However, the synthesis and morphology control of HEA remains a challenge. Herein, we use a fast co-reduction method to synthesize a series of ultrathin wavy nanowires(WNWs) with an average diameter of 3–5 nm, including Pt-based and Pd-based binary alloys, and HEA with different pairs of immiscible elements. The catalytic properties of Pt Pd A...  相似文献   

14.
The microstructure of the as-cast 2D70 aluminum alloy and its evolution during homogenization were investigated by means of optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) analysis. The results indicate that the microstructure of the as-cast 2D70 aluminum alloy mainly consists of the dendritic network of aluminum solid solution and intermetallic compounds (Al2CuMg, Al2Cu, Al9FeNi, Cu2FeAl7, and Al7Cu4Ni). After conventional homogenization, Al/Al2CuMg eutectic phases are dissolved into the matrix, and a small amount of high melting-point eutectic Al/Al2Cu phases exist in the matrix, resulting in an increase in the starting melting temperature. Under double homogenization, the high melting point Al/Al2Cu phases are dissolved, and no obvious change is observed for the size and morphology of Al9FeNi, Cu2FeAl7, and Al7CuaNi compounds.  相似文献   

15.
AlCrCuFeNi高熵合金的组织与硬度研究   总被引:3,自引:0,他引:3  
利用真空电弧炉熔铸等摩尔比的AlCrCuFeNi高熵合金.X射线衍射分析与扫描电镜能谱分析表明,AlCrCuFeNi高熵合金具有面心立方和体心立方结构,合金铸态组织是典型的树枝晶,铬偏聚于晶内,而铜偏聚于枝晶间.AICrCuFeNi高熵合金具有高硬度与耐回火软化特性,铸态硬度为HV490,600℃退火后硬度还维持在HV420;高熵合金的铸态组织比较稳定.  相似文献   

16.
FeNiMnCuC0.2Alx高熵合金结构及性能研究   总被引:1,自引:0,他引:1  
通过高频感应加热在真空下制备FeNiMnCuC0.2Alx(x=0、0.1、0.2、0.5 mol)高熵合金,对固溶处理后的试样进行结构及性能研究.结果表明, FeNiMnCuC0.2Alx高熵合金具有简单的面心立方结构;添加少量Al(x=0.1、0.2 mol)能细化FeNiMnCuC0.2Alx高熵合金晶粒,但x=0.5 mol时,晶粒又变得粗大;初生树枝状晶富含Fe、Ni元素,Mn、Cu在枝晶间相内有所聚集,C、Al大体上均匀分布于两相中;x=0时, FeNiMnCuC0.2Alx高熵合金具有高的抗压强度(5 218 MPa),x=0.1 mol时,合金抗压强度(4037MPa)和压缩率(>75%)均较佳,随Al添加量的继续增加,合金压缩性能有所下降, x=0.5 mol时,合金表现为脆性断裂.合金晶粒,但x=0.5 mol时,晶粒又变得粗大;初生树枝状晶富含Fe、Ni元素,Mn、Cu在枝晶间相内有所聚集,C、Al大体上均匀分布于两相中;x=0时, FeNiMnCuC0.2Alx高熵合金具有高的抗压 度(5 218 MPa),x=0  相似文献   

17.
采用粉末冶金方法制备含Te的Ni-Cr合金试样.在800士5℃高温进行抗氧化实验.通过氧化动力学曲线分析、氧化皮金相组织和断面形貌观察、X-ray分析表明:Te的加入在合金内部形成新相Cr2TeO4和Fe3TeO,提高合金材料氧化皮的粘附性.并且有效抑制Cr2O3的挥发反应,从而改善Cr2O3氧化层的致密性.  相似文献   

18.
为提高Fe-Cr合金的抗高温抗氧化性能,采用电火花沉积技术对不同Cr含量的Fe-Cr合金表面进行微晶化处理,研究了铸态和微晶化合金在900℃空气中的抗高温氧化行为。氧化动力学曲线、物相分析、表面和截面形貌表明,当Cr含量较低时,微晶化处理提高了Cr的扩散速度,但不足以生成连续的氧化膜,氧化性能变差;当Cr含量较高时,微晶化处理降低了形成保护性氧化膜的临界含量,微晶化处理的Fe-9Cr和Fe-13Cr合金抗氧化性能明显提高。微晶化处理Fe-13Cr合金的抗高温氧化性能最好,这是由于微晶化处理后13%(质量分数)的Cr可以形成连续致密的保护性氧化膜。因此,微晶化处理是提高材料抗高温氧化性能的有效方法,可应用于高温氧化领域。  相似文献   

19.
用不连续称重法研究了添加Ce(0.2%wt)对Fe-27Cr-7Al合金1000℃氧化动力学的影响.用X射线,扫描电镜研究了Ce(0.2%wt)对Fe-27Cr-7Al合金1000℃下氧化膜的生长和形貌的影响.结果表明,添加Ce(0.2%wt)明显降低了Fe-27Cr-7Al合金的高温氧化速率.在氧化初期,添加Ce促进了θ-Al2O3的生成,并使之迅速转变为α- Al2O3.Ce的添加可以使氧化膜更为平整.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号