首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A per-O-methylated beta-cyclodextrin dimer, Py2CD, was conveniently prepared via two steps: the Williamson reaction of 3,5-bis(bromomethyl)pyridine and beta-cyclodextrin (beta-CD) yielding 2A,2'A-O-[3,5-pyridinediylbis(methylene)bis-beta-cyclodextrin (bisCD) followed by the O-methylation of all the hydroxy groups of the bisCD. Py2CD formed a very stable 1:1 complex (Fe(III)PCD) with [5,10,15,20-tetrakis(p-sulfonatophenyl)porphinato]iron(III) (Fe(III)TPPS) in aqueous solution. Fe(III)PCD was reduced with Na2S2O4 to afford the Fe (II)TPPS/Py2CD complex (Fe(II)PCD). Dioxygen was bound to Fe(II)PCD, the P(1/2)(O2) values being 42.4 +/- 1.6 and 176 +/- 3 Torr at 3 and 25 degrees C, respectively. The k(on)(O2) and k(off)(O2) values for the dioxygen binding were determined to be 1.3 x 10(7) M(-1) s(-1) and 3.8 x 10(3) s(-1), respectively, at 25 degrees C. Although the dioxygen adduct was not very stable (K(O2) = k(on)(O2)/k(off)(O2) = 3.4 x 10(3) M(-1)), no autoxidation of the dioxygen adduct of Fe(II)PCD to Fe(III)PCD was observed. These results suggest that the encapsulation of Fe (II)TPPS by Py2CD strictly inhibits not only the extrusion of dioxygen from the cyclodextrin cage but also the penetration of a water molecule into the cage. The carbon monoxide affinity of Fe(II)PCD was much higher than the dioxygen affinity; the P(1/2)(CO), k(on)(CO), k(off)(CO), and K(CO) values being (1.6 +/- 0.2) x 10(-2) Torr, 2.4 x 10(6) M(-1) s(-1), 4.8 x 10(-2) s(-1), and 5.0 x 10(7) M(-1), respectively, at 25 degrees C. Fe(II)PCD also bound nitric oxide. The rate of the dissociation of NO from (NO)Fe(II)PCD ((5.58 +/- 0.42) x 10(-5) s(-1)) was in good agreement with the maximum rate ((5.12 +/- 0.18) x 10(-5) s(-1)) of the oxidation of (NO)Fe(II)PCD to Fe(III)PCD and NO3(-), suggesting that the autoxidation of (NO)Fe(II)PCD proceeds through the ligand exchange between NO and O2 followed by the rapid reaction of (O2)Fe(II)PCD with released NO, affording Fe(II)PCD and the NO3(-) anion inside the cyclodextrin cage.  相似文献   

2.
The structure of a carbon monoxide adduct (CO-hemoCD) of a 1:1 complex of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphinato iron(II) (Fe(II)TPPS) and an O-methylated β-cyclodextrin dimer having a pyridine linker (1) has been determined by means of NMR spectroscopy and molecular mechanics (MM) calculation. The results indicate the structure as that the sulfonatophenyl groups at the 5- and 15-positions of Fe(II)TPPS are incorporated into two cyclodextrin cavities of 1 to form a 1:1 inclusion complex (hemoCD), whose Fe(II) center is coordinated by a carbon monoxide (CO) molecule. CO-hemoCD possesses a C 2v symmetrical nature that is supported by MM calculation. The energy minimized structure of CO-hemoCD suggests that the CO–Fe(II) part is significantly covered by two cyclodextrin moieties resulting in a cage effect in CO binding phenomenon. Other spectroscopic results of relating complexes also support the structure of hemoCD deduced from the results concerning CO-hemoCD.  相似文献   

3.
The 1:1 inclusion complex of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphinato iron(II) (Fe(II)TPPS) and an O-methylated beta-cyclodextrin dimer having a pyridine linker (1) binds dioxygen reversibly in aqueous solution. The O2 adduct was very stable (t(1/2) = 30.1 h) at pH 7.0 and 25 degrees C. ESI-MS and NMR spectroscopic measurements and molecular mechanics (MM) calculations indicated the inclusion of the sulfonatophenyl groups at the 5- and 15-positions of Fe(III)TPPS or Fe(II)TPPS into two cyclodextrin moieties of 1 to form a supramolecular 1:1 complex (hemoCD1 for the Fe(II)TPPS complex), whose iron center is completely covered by two cyclodextrin moieties. Equilibrium measurements and laser flash photolysis provided the affinities ( and ) and rate constants for O2 and CO binding of hemoCD1 (k(O2)(on), k(O2)(off), k(CO)(on), and k(CO)(off)). The CO affinity relative to the O2 affinity of hemoCD1 was abnormally high. Although resonance Raman spectra suggested weak back-bonding of d(pi)(Fe) --> pi(CO) and hence a weak CO-Fe bond, the CO adduct of hemoCD1 was very stable. The hydrophobic CO molecule dissociated from CO-hemoCD1 hardly breaks free from a shallow cleft in hemoCD1 surrounded by an aqueous bulk phase leading to fast rebinding of CO to hemoCD1. Isothermal titration calorimetry furnished the association constant (K(O2)), DeltaH degrees , and DeltaS degrees for O2 association to be (2.71 +/- 0.51) x 10(4) M(-1), -65.2 +/- 4.4 kJ mol(-1), and -133.9 +/- 16.1 J mol(-1) K(-1), respectively. The autoxidation of oxy-hemoCD1 was accelerated by H+ and OH-. The inorganic anions also accelerated the autoxidation of oxy-hemoCD1. The O2-Fe(II) bond is equivalent to the O2.--Fe(III) bond, which is attacked by the inorganic anions or the water molecule to produce met-hemoCD1 and a superoxide anion.  相似文献   

4.
A series of mononuclear iron(II) and zinc(II) complexes of the new chiral Py(ProMe)2 ligand (Py(ProMe)2 = 2,6-bis[[(S)-2-(methyloxycarbonyl)-1-pyrrolidinyl]methyl]pyridine) have been prepared. The molecular geometry in the solid state (X-ray crystal structures) of the complexes [FeCl2(Py(ProMe)2)] (1), [ZnCl2(Py(ProMe)2)] (2), [Fe(OTf)2(Py(ProMe)2)] (3), [Fe(Py(ProMe)2)(OH2)2](OTf)2 (4), and [Zn(OTf)(Py(ProMe)2)](OTf) (5) are reported. They all show a meridional NN'N coordination of the Py(ProMe)2 ligand. The bis-chloride derivatives 1 and 2 represent neutral isostructural five-coordinated complexes with a distorted geometry around the metal center. Unusual seven-coordinate iron(II) complexes 3 and 4 having a pentagonal bipyramidal geometry were obtained using weakly coordinating triflate anions. The reaction of Zn(OTf)2 with the Py(ProMe)2 ligand afforded complex 5 with a distorted octahedral geometry around the zinc center. All complexes were formed as single diastereoisomers. In the case of complexes 3-5, the oxygen atoms of both carbonyl groups of the ligand are also coordinated to the metal. The stereochemistry of the coordinated tertiary amine donors in complexes 3-5 is of opposite configuration as in complexes 1 and 2 as a result of the planar penta-coordination of the ligand Py(ProMe)2. Complexes 1, 2, and 5 have an overall -configuration at their metal center, while the Fe(II) ion in complexes 3 and 4 has the opposite delta-configuration (crystal structures and CD measurements). The magnetic moments of iron complexes 1, 3, and 4 correspond to that of high-spin d6 Fe(II) complexes. The solution structures of complexes 1-5 were characterized by means of UV-vis, IR, conductivity, and CD measurements and their electrochemical behavior. These studies showed that the coordination environment of 1 and 2 observed in the solid state is maintained in solution. In coordinating solvents, the triflate anion (3, 5) or water (4) co-ligands of complexes 3-5 are replaced by solvent molecules with retention of the original pentagonal bipyramidal and octahedral geometry, respectively.  相似文献   

5.
We report the characterization and solution chemistry of a series of Fe(II) complexes based on the pentadentate ligands N4Py (1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine), MeN4Py (1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)ethanamine), and the tetradentate ligand Bn-N3Py (N-benzyl-1,1-di(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine) ligands, i.e., [Fe(N4Py)(CH(3)CN)](ClO(4))(2) (1), [Fe(MeN4Py)(CH(3)CN)](ClO(4))(2) (2), and [Fe(Bn-N3Py)(CH(3)CN)(2)](ClO(4))(2) (3), respectively. Complexes 2 and 3 are characterized by X-ray crystallography, which indicates that they are low-spin Fe(II) complexes in the solid state. The solution properties of 1-3 are investigated using (1)H NMR, UV/vis absorption, and resonance Raman spectroscopies, cyclic voltammetry, and ESI-MS. These data confirm that in acetonitrile the complexes retain their solid-state structure, but in water immediate ligand exchange of the CH(3)CN ligand(s) for hydroxide or aqua ligands occurs with full dissociation of the polypyridyl ligand at low (<3) and high (>9) pH. pH jumping experiments confirm that over at least several minutes the ligand dissociation observed is fully reversible for complexes 1 and 2. In the pH range between 5 and 8, complexes 1 and 2 show an equilibrium between two different species. Furthermore, the aquated complexes show a spin equilibrium between low- and high-spin states with the equilibrium favoring the high-spin state for 1 but favoring the low-spin state for 2. Complex 3 forms only one species over the pH range 4-8, outside of which ligand dissociation occurs. The speciation analysis and the observation of an equilibrium between spin states in aqueous solution is proposed to be the origin of the effectiveness of complex 1 in cleaving DNA in water with (3)O(2) as terminal oxidant.  相似文献   

6.
新型6-羟基改性β-环糊精衍生物的合成   总被引:1,自引:0,他引:1  
为揭示亲水基团在客体分子中的作用,对β-环糊精作6-羟基改性合成了6-O-(对-甲苯甲酰基)-β-环糊精,6-O-(对-溴苯甲酰基)-β-环糊精和6-O-肉桂酰基-β-环糊精三种新型衍生物。其结构经元素分析,IR,1^H NMR,。^13C NMR,EI-MS,HR-MS等确认。  相似文献   

7.
The apportionment of electrons between iron and the porphyrinic macrocycle in complexes of octaethyloxophlorin (H3OEPO) has been a vexing problem. In particular, for (Py)2Fe(OEPO), which is an important intermediate in heme degradation, three resonance structures involving Fe(III), Fe(II), or Fe(I), respectively, have been considered. To clarify this matter, the electronic and geometric structures of (Py)2Fe(III)(OEPO), (Im)2Fe(III)(OEPO).2THF, and (Im)2Fe(III)(OEPO).1.6CHCl3 have been examined by single-crystal X-ray diffraction, measurement of magnetic moments as a function of temperature, and EPR and NMR spectral studies. The results clearly show that both complexes exist in the Fe(III)/oxophlorin trianion form rather than the Fe(II)/oxophlorin radical form previously established for (2,6-xylylNC)(2)Fe(II)(OEPO.). In the solid state from 10 to 300 K, (Py)2Fe(III)(OEPO) exists in the high-spin (S = 5/2) state with the axial ligands in parallel planes, a planar porphyrin, and long axial Fe-N distances. However, in solution it exists predominantly in a low-spin (S = 1/2) form. In contrast, the structures of (Im)2Fe(III)(OEPO).2THF and (Im)2Fe(III)(OEPO).1.6CHCl3 consist of porphyrins with a severe ruffled distortion, axial ligands in nearly perpendicular planes, and relatively short axial Fe-N distances. The crystallographic, magnetic, EPR, and NMR results all indicate that (Im)2Fe(III)(OEPO) exists in the low-spin Fe(III) form in both the solid state and in solution.  相似文献   

8.
The mixed N3S(thiolate) ligand 1-[bis[2-(pyridin-2-yl)ethyl]amino]-2-methylpropane-2-thiol (Py2SH) was used in the synthesis of four iron(II) complexes: [(Py2S)FeCl] (1), [(Py2S)FeBr] (2), [(Py2S)4Fe5II(mu-OH)2](BF4)4 (3), and [(Py2S)2Fe2II(mu-OH)]BF4 (4). The X-ray structures of 1 and 2 revealed monomeric iron(II)-alkylthiolate complexes with distorted trigonal-bipyramidal geometries. The paramagnetic 1H NMR spectra of 1 and 2 display resonances from delta = -25 ppm to +100 ppm, consistent with a high-spin iron(II) ion (S = 2). Spectral assignments were made on the basis of chemical shift information and T1 measurements and show the monomeric structures are intact in solution. To provide entry into hydroxide-containing complexes, a novel synthetic method was developed involving strict aprotic conditions and limiting amounts of H2O. Reaction of Py2SH with NaH and Fe(BF4)2.6 H2O under aprotic conditions led to the isolation of the pentanuclear, mu-OH complex 3, which has a novel dimer-of-dimers type structure connected by a central iron atom. Conductivity data on 3 show this structure is retained in CH2Cl2. Rational modification of the ligand-to-metal ratio allows control over the nuclearity of the product, yielding the dinuclear complex 4. The X-ray structure of 4 reveals an unprecedented face-sharing, biooctahedral complex with an [S2O] bridging arrangement. The magnetic properties of 3 and 4 in the range 1.9-300 K were successfully modeled. Dinuclear 4 is antiferromagnetically coupled [J = -18.8(2) cm(-1)]. Pentanuclear 3 exhibits ferrimagnetic behavior, with a high-spin ground state of S(T) = 6, and was best modeled with three different exchange parameters [J = -15.3(2), J' = -24.7(3), and J' = -5.36(7) cm(-1)]. DFT calculations provided good support for the interpretation of the magnetic properties.  相似文献   

9.
The reactions of nitric oxide and carbon monoxide with water soluble iron and cobalt porphyrin complexes were investigated over the temperature range 298-318 K and the hydrostatic pressure range 0.1-250 MPa [porphyrin ligands: TPPS = tetra-meso-(4-sulfonatophenyl)porphinate and TMPS = tetra-meso-(sulfonatomesityl)porphinate]. Large and positive DeltaS(double dagger) and DeltaV(double dagger) values were observed for NO binding to and release from iron(III) complexes Fe(III)(TPPS) and Fe(III)(TMPS) consistent with a dissociative ligand exchange mechanism where the lability of coordinated water dominates the reactivity with NO. Small positive values for Delta and Delta for the fast reactions of NO with the iron(II) and cobalt(II) analogues (k(on) = 1.5 x 10(9) and 1.9 x 10(9) M(-1) s(-1) for Fe(II)(TPPS) and Co(II)(TPPS), respectively) indicate a mechanism dominated by diffusion processes in these cases. However, reaction of CO with the Fe(II) complexes (k(on) = 3.6 x 10(7) M(-1) s(-1) for Fe(II)(TPPS)) displays negative Delta and Delta values, consistent with a mechanism dominated by activation rather than diffusion terms. Measurements of NO dissociation rates from Fe(II)(TPPS)(NO) and Co(II)(TPPS)(NO) by trapping free NO gave k(off) values of 6.3 x 10(-4) s(-1) and 1.5 x 10(-4) s(-1). The respective M(II)(TPPS)(NO) formation constants calculated from k(on)/k(off) ratios were 2.4 x 10(12) and 1.3 x 10(13) M(-1), many orders of magnitude larger than that (1.1 x 10(3) M(-1)) for the reaction of Fe(III)(TPPS) with NO.  相似文献   

10.
Uncharged complexes, formulated as trimeric metallocycles of type [M3(L(1))3(Py)6] (where M = cobalt(II), nickel(II) and zinc(II) and L(1) is the doubly deprotonated form of a 1,4-phenylene linked bis-beta-diketone ligand of type 1,4-bis(RC(O)CH2C(O))C6H4 (R = t-Bu)) have been synthesised, adding to related, previously reported complexes of these metals with L(1) (R = Ph) and copper(ii) with L(1) (R = Me, Et, Pr, t-Bu, Ph). New lipophilic ligand derivatives with R = hexyl, octyl or nonyl were also prepared for use in solvent extraction experiments. The X-ray structures of H2L(1) (R = t-Bu) and of its trinuclear (triangular) nickel(II) complex [Ni3(L(1))3(Py)6].3.5Py (R = t-Bu) are also presented. Electrochemical studies of H2L(1), [Co3(L(1))3(Py)6], [Ni3(L(1))3(Py)6], [Cu3(L(1))3], [Zn3(L(1))3(Py)6] and [Fe4(L(1))6] (all with R = t-Bu) show that oxidative processes for the complexes are predominantly irreversible, but several examples of quasireversible behaviour also occur and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as involving metal-centred oxidations. The reduction behaviour for the respective metal complexes is not simple, being irreversible in most cases. Solvent extraction studies (water/chloroform) involving the systematic variation of the metal, bis-beta-diketone and heterocyclic base concentrations have been performed for cobalt(II) and zinc(II) using a radiotracer technique in order to probe the stoichiometries of the respective extracted species. Significant extraction synergism was observed when 4-ethylpyridine was also present with the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies demonstrated a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

11.
The intramolecular oxidation of ROCH3 to ROCH2OH, where the latter compound spontaneously decomposed to ROH and HCHO, was observed during the reaction of the supramolecular complex (met‐hemoCD3) with cumene hydroperoxide in aqueous solution. Met‐hemoCD3 is composed of meso‐tetrakis(4‐sulfonatophenyl)porphinatoiron(III) (FeIIITPPS) and a per‐O‐methylated β‐cyclodextrin dimer having an ‐OCH2PyCH2O‐ linker (Py=pyridine‐3,5‐diyl). The O=FeIVTPPS complex was formed by the reaction of met‐hemoCD3 with cumene hydroperoxide, and isolated by gel‐filtration chromatography. Although the isolated O=FeIVTPPS complex in the cyclodextrin cage was stable in aqueous solution at 25 °C, it was gradually converted to FeIITPPS (t1/2=7.6 h). This conversion was accompanied by oxidative O‐demethylation of an OCH3 group in the cyclodextrin dimer. The results indicated that hydrogen abstraction by O=FeIVTPPS from ROCH3 yields HO‐FeIIITPPS and ROCH2.. This was followed by radical coupling to afford FeIITPPS and ROCH2OH. The hemiacetal (ROCH2OH) immediately decomposed to ROH and HCHO. This study revealed the ability of oxoferryl porphyrin to induce two‐electron oxidation.  相似文献   

12.
Oxidative inactivation of the serine proteases trypsin and chymotrypsin by nonheme iron complexes is described. The nonheme ligands N4Py (1) and derivative 3CG-N4Py (2), which contains a pendant guanidinium group, were used as ligands for iron. Ferryl (Fe(IV)O) species derived from these ligands, [Fe(IV)(O)(N4Py)](2+) (7) and [Fe(IV)(O)(3CG-N4Py)](3+) (8), inactivate trypsin and chymotrypsin by the oxidation of amino acid side chains. Ferryl 8 is most effective with chymotrypsin (IC(50) value of 26 μM for 8 vs 119 μM for 7). IC(50) values of 71 and 54 μM were obtained for trypsin with 7 and 8, respectively. Amino acid analysis confirmed that residues cysteine, tyrosine, and tryptophan are oxidized under these conditions. Trypsin is inactivated preferentially over chymotrypsin under catalytic conditions, where the enzyme was pulsed with H(2)O(2) in the presence of ferrous complexes [Fe(II)(OH(2))(N4Py)](2+)(5) and [Fe(II)(Cl)(3CG-N4Py)](2+) (6). Control experiments support the action of a unique oxidant, other than ferryls or hydroxyl radicals, under these conditions, where tyrosine residues are targeted selectively.  相似文献   

13.
A series of diiron complexes developed as fundamental models of the two-iron subsite in the [FeFe]-hydrogenase enzyme active site show water-solubility by virtue of a sulfonate group incorporated into the -SCH(2)NRCH(2)S- dithiolate unit that bridges two Fe(I)(CO)(2)L moieties. The sulfanilic acid group imparts even greater water solubility in the presence of β-cyclodextrin, β-CyD, for which NMR studies suggest aryl-sulfonate inclusion into the cyclodextrin cavity as earlier demonstrated in the X-ray crystal structure of 1Na·2 β-CyD clathrate, where 1Na = Na(+)(μ-SCH(2)N(C(6)H(4)SO(3)(-))CH(2)S-)[Fe(CO)(3)](2), (Singleton et al., J. Am. Chem. Soc.2010, 132, 8870). Electrochemical analysis of the complexes for potential as electrocatalysts for proton reduction to H(2) finds the presence of β-CyD to diminish response, possibly reflecting inhibition of structural rearrangements required of the diiron unit for a facile catalytic cycle. Advantages of the aryl sulfonate approach include entry into a variety of water-soluble derivatives from the well-known (μ-SRS)[Fe(CO)(3)](2) parent biomimetic, that are stable in O(2)-free aqueous solutions.  相似文献   

14.
Neutral dimeric metallocyclic complexes of type [M(2)(L(1))(2)B(n)] (where M = cobalt(II), nickel(II) and zinc(II), L(1) is the doubly deprotonated form of a 1,3-aryl linked bis-beta-diketone ligand of type 1,3-bis(RC(O)CH(2)C(O))C(6)H(4) (R=Me, n-Pr, t-Bu) and B is pyridine (Py) or 4-ethylpyridine (EtPy)) have been synthesised, adding to similar complexes already reported for copper(II). New lipophilic ligand derivatives with R = octyl or nonyl were also prepared for use in solvent extraction experiments. Structural, electrochemical and solvent extraction investigations of selected metal complex systems from the above series are reported, with the X-ray structures of [Co(2)(L(1))(2)(Py)(4)] x 2.25CHCl(3) x 0.5H(2)O (R=Pr), [Co(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Ni(2)(L(1))(2)(EtPy)(4)] (R=t-Bu), [Zn(2)(L(1))(2)(EtPy)(2)] (R=Me) and [Zn(2)(L(1))(2)(EtPy)(4)] (R=t-Bu) being presented. The electrochemistry of H(2)L(1) (R=t-Bu) and of [Fe(2)(L(1))(3)], [Co(2)(L(1))(2)(Py)(4)], [Ni(2)(L(1))(2)(Py)(4)], [Cu(2)(L(1))(2)] and [Zn(2)(L(1))(2)(Py)(2)] has been examined. Oxidative processes for the complexes are dominantly irreversible, but several examples of quasireversible behaviour were observed and support the assignment of an anodic process, seen between +1.0 and +1.6 V, as a metal-centred oxidation. The reduction processes for the respective metal complexes are not simple, and irreversible in most cases. Solvent extraction studies (water/chloroform) involving variable concentrations of metal, bis-beta-diketone and heterocyclic base have been performed for cobalt(II) and zinc(II) using a radiotracer technique to probe the stoichiometries of the extracted species in each case. Synergism was observed when 4-ethylpyridine was added to the bis-beta-diketone ligand in the chloroform phase. Competitive extraction studies show a clear uptake preference for copper(II) over cobalt(II), nickel(II), zinc(II) and cadmium(II).  相似文献   

15.
Mononuclear iron(III) species with end-on and side-on peroxide have been proposed or identified in the catalytic cycles of the antitumor drug bleomycin and a variety of enzymes, such as cytochrome P450 and Rieske dioxygenases. Only recently have biomimetic analogues of such reactive species been generated and characterized at low temperatures. We report the synthesis and characterization of a series of iron(II) complexes with pentadentate N5 ligands that react with H(2)O(2) to generate transient low-spin Fe(III)-OOH intermediates. These intermediates have low-spin iron(III) centers exhibiting hydroperoxo-to-iron(III) charge-transfer bands in the 500-600-nm region. Their resonance Raman frequencies, nu(O)(-)(O), near 800 cm(-)(1) are significantly lower than those observed for high-spin counterparts. The hydroperoxo-to-iron(III) charge-transfer transition blue-shifts and the nu(O)(-)(O) of the Fe-OOH unit decreases as the N5 ligand becomes more electron donating. Thus, increasing electron density at the low-spin Fe(III) center weakens the O-O bond, in accord with conclusions drawn from published DFT calculations. The parent [(N4Py)Fe(III)(eta(1)-OOH)](2+) (1a) ion in this series (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) can be converted to its conjugate base, which is demonstrated to be a high-spin iron(III) complex with a side-on peroxo ligand, [(N4Py)Fe(III)(eta(2)-O(2))](+) (1b). A detailed analysis of 1a and 1b by EPR and M?ssbauer spectroscopy provides insights into their electronic properties. The orientation of the observed (57)Fe A-tensor of 1a can be explained with the frequently employed Griffith model provided the rhombic component of the ligand field, determined by the disposition of the hydroperoxo ligand, is 45 degrees rotated relative to the octahedral field. EXAFS studies of 1a and 1b reveal the first metrical details of the iron-peroxo units in this family of complexes: [(N4Py)Fe(III)(eta(1)-OOH)](2+) has an Fe-O bond of 1.76 A, while [(N4Py)Fe(III)(eta(2)-O(2))](+) has two Fe-O bonds of 1.93 A, values which are in very good agreement with results obtained from DFT calculations.  相似文献   

16.
铁卟啉轴向配位络合物在环己烷氧化反应中的催化作用   总被引:1,自引:0,他引:1  
亚铁卟啉络合物因其可逆键合分子氧的性能而受到人们的重视。基于生物体中的亚铁卟啉络合物的轴向位置键合有一定的基团,因而对于铁卟啉及其轴向配位体的研究较为活跃,但有关其催化性能方面的研究报导甚少。  相似文献   

17.
One mononuclear iron(II)-phenylpyruvate complex [Tp(Ph2)Fe(II)(PPH)] (1) of the tridentate face-capping Tp(Ph2) ligand and two dinuclear iron(II)-phenylpyruvate enolate complexes [(6-Me3-TPA)2Fe(II)2(PP)]2+ (2) and [(6-Me3-TPA)2Fe(II)2(2-NO2-PP)]2+ (3) of the tetradentate 6-Me3-TPA ligand are reported to demonstrate two different binding modes of phenylpyruvate to the iron(II) centers. Phenylpyruvate binds in a kappa2-(O,O) manner to the mononuclear Fe(II)(Tp(Ph2)) center of 1 but bridges in a kappa3-(O,O,O) fashion to the two Fe(II)(6-Me3-TPA) centers of 2 and 3. Mononuclear complex 1 reacts with O2 to undergo oxidative decarboxylation and ortho-hydroxylation of one of the aromatic rings of the Tp(Ph2) ligand. In contrast, dinuclear complexes 2 and 3 react with O2 to undergo oxidative cleavage of the C2-C3 bond of phenylpyruvate.  相似文献   

18.
A series of iron(III) complexes based on the tetradentate ligand 4-((1-methyl-1H-imidazol-2-yl)methyl)-1-thia-4,7-diazacyclononane (L) has been synthesized, and their solution properties investigated. Addition of FeCl(3) to methanol solutions of L yields [LFeCl(2)]FeCl(4) as a dark red solid. X-ray crystallographic analysis reveals a pseudo-octahedral environment around iron(III) with the three nitrogen donors of L coordinated facially. Ion exchange reactions with NaPF(6) in methanol facilitate chloride exchange resulting in a different diastereomer for the [LFeCl(2)](+) cation. X-ray analysis of [LFeCl(2)]PF(6) finds meridional coordination of the three nitrogen donors of L. Electrochemical studies of [LFeCl(2)](+) in acetonitrile display a single Fe(III)/(II) reduction potential at -280 mV versus ferrocenium/ferrocene. In methanol, a broad cathodic wave is observed because of partial exchange of one chloride for methoxide with half-potentials of -170 mV and -440 mV for [LFeCl(2)](+/0) and [LFeCl(OCH(3))](+/0), respectively. The equilibrium constants for chloride exchange are 7 × 10(-4) M(-1) for Fe(III) and 2 × 10(-8) M(-1) for Fe(II). In aqueous solutions chloride exchange yields three accessible complexes as a function of pH. Strongly acidic conditions yield the aqua complex [LFeCl(OH(2))](2+) with a measured pK(a) of 3.8 ± 0.1. Under mildly acidic conditions, the μ-OH complex [(LFeCl)(2)(OH)](3+) with a pK(a) of 6.1 ± 0.3 is obtained. The μ-oxo complex [(LFeCl)(2)(O)](2+) is favored under basic conditions. The diiron Fe(III)/Fe(III) complexes [(LFeCl)(2)(OH)](3+) and [(LFeCl)(2)(O)](2+) can be reduced by one electron to the mixed valence Fe(III)/Fe(II) derivatives at -170 mV and -390 mV, respectively. From pH dependent voltammetric studies, the pK(a) of the mixed valent μ-OH complex [(LFeCl)(2)(OH)](2+) is calculated at 10.3.  相似文献   

19.
Iron is one of the most abundant metals found in senile plaques of post mortem patients with Alzheimer's disease. However, the interaction mode between iron ions and β-amyloid peptide as well as their precise affinity is unknown. In this study we apply ab initio computational methodology to calculate binding energies of Fe(2+/3+) with the His13-His14 sequence of Aβ, as well as other important ligands such as His6 and Tyr10. Calculations were carried out at the "MP2/6-311+G(2df,2p)"//B3LYP/6-31+G(d) level of theory and solvent effects included by the IEFPCM procedure. Several reaction paths for the binding of imidazole, phenol, and the His13-His14 fragment (modeled by N-(2-(1H-imidazol-4-yl)ethyl)-3-(1H-imidazol-4-yl)propanamide) were sequentially explored. The results show that the most stable complexes containing His13-His14 and phenolate of Tyr10 are the pentacoordinated [Fe(2+)(O-HisHis)(PhO(-))(H(2)O)](+) and [Fe(3+)(N-HisHis)(PhO(-))(H(2)O)](+) compounds and that simultaneous coordination of tyrosine and His13-His14 to Fe(2+/3+) is thermodynamically favorable in water at physiological pH. Computed Raman spectra confirm the conclusion obtained by Miura et al. ( Biochemistry 2000 , 39 , 7024 ) that tyrosine is coordinated to Fe(3+) but do not exclude coordination of imidazoles. Finally, calculations of standard reduction potentials indicate that phenol coordination reduces the redox activity of the iron/Aβ complexes.  相似文献   

20.
尤长城  张Min  刘育 《化学学报》2000,58(3):338-342
用荧光光谱滴定法测定了单-[6-(二乙烯三胺)-6-脱氧]-β-环糊精(1)、单-[6-(三乙烯四胺)-6-脱氧]-β-环糊精(2)及其铜配合物(3,4)与一系列萘衍生物在磷酸缓冲溶液(pH7.2,0.1mol.dm^-^3)中,25℃时形成超分子体系的稳定常数,并与母体β-环糊精的配位能力进行了比较。化学计量法表明,四种化学修饰β-环糊精与萘衍生物形成了1:1的超分子配合物。从尺寸适合、几何互补及多点识别等方面讨论了主体化合物对模型底物的分子选择性键合能力。结果表明,疏水相互作用、范德华力、静电相互作用及氢键等多种非共价键弱相互作用协同贡献于超分子配合物的形成,主-客体间的结构匹配在分子受体选择性键合底物形成超分子配合物中起重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号