首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transport properties, temperature‐dependent phonon‐limited electrical and thermal resistivities in the normal state of two‐dimensionally (2D) infinite‐fused zinc porphyrin with a directly mesomeso‐, β‐β‐, and β‐β‐linked array structure ZnP were theoretically calculated using linear‐response approach based on density functional theory (DFT). The calculated transport electron–phonon coupling (EPC) constant using the density functional perturbation theory (DFPT) shows almost equal to the superconducting EPC constant, which is the similar situation within a difference by ca. 10% between them for the transition metals. The calculated electrical and thermal resistivities at 300 K obtained by solving the Boltzmann equation within the lowest‐order variational approximation (LOVA) are only larger by one digit than those of the reference metal Al, expecting to become a fantastic 2D synthetic metal without an injection of conductive carriers from outside, e.g., by doping. The calculated results for the 2D infinite‐fused lithium porphyrin LiP with the same ground state as the one‐electron oxidative state of ZnP were also discussed for comparison. This simple approach using the first applied plane‐wave ultrasoft pseudopotentials (US‐PPs) is a usable technique for the prediction of the transport properties of simple metallic materials within the practical temperature range. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

2.
研究了表面带有环氧基团的玻璃纤维(GF)对聚丙烯(PP)/热塑性聚氨酯(TPU)/多壁碳纳米管(MWCNT)、 聚甲基丙烯酸甲酯(PMMA)/TPU/MWCNT和聚乳酸(PLA)/TPU/MWCNT体系导电性能的影响. 研究结果表明, 未添加GF时, 由于MWCNTs选择性地分布在TPU分散相中, PP/TPU/MWCNT, PMMA/TPU/MWCNT和PLA/TPU/MWCNT材料的导电性能很差; 加入20%的GF使3个体系的电阻率均大幅度下降, 最高下降约13个数量级, 表明填充GF是一种具有普适性的改善以TPU为分散相的共混体系导电性能的有效方法. GF使体系电阻率降低的机理主要是形成了TPU包覆GF结构, 该结构可以看作长径比较高的导电棒, 可以有效协助导电通路的构建; 同时GF还起到了体积占位的作用, 提高了体系中导电组分在基体中的有效浓度.  相似文献   

3.
 The nonlinear J-E characteristics under self-heating equilibrium for conductive composites based on high density polyethylene were studied. The results show that there are identical conduction mechanisms under self-heating equilibrium for the composites with various initial resistivities determined by filler content or ambient temperature. The nonlinear conduction behavior was involved in the limited microstructure transformations of the conducting network induced by electrical field applied and the corresponding self-heating effect. A reversible thermal fuse (RTF) model was suggested to interpret the physical origin of the nonlinear J-E characteristics.  相似文献   

4.
Two techniques for producing dense uniform bulk scattering in cells containing smectic A liquid crystals have been examined for use in a large area liquid crystal projection display. Textures obtained using both thermal pulses and by dynamic scattering in the smectic A phase were evaluated for their uniformity and scattering density. The conditions required for optimum scattering are described in terms of the electrical characteristics of the scattering pulses used, the effects of different surface alignment treatments and of the nematic bandwidth of the materials employed. The two techniques are compared with respect to their suitability for large area, high information content, white on black, laser addressed liquid crystal light valves.  相似文献   

5.
Abstract

Two techniques for producing dense uniform bulk scattering in cells containing smectic A liquid crystals have been examined for use in a large area liquid crystal projection display. Textures obtained using both thermal pulses and by dynamic scattering in the smectic A phase were evaluated for their uniformity and scattering density. The conditions required for optimum scattering are described in terms of the electrical characteristics of the scattering pulses used, the effects of different surface alignment treatments and of the nematic bandwidth of the materials employed. The two techniques are compared with respect to their suitability for large area, high information content, white on black, laser addressed liquid crystal light valves.  相似文献   

6.
采用液相电化学沉积法,以二氰二胺的丙酮溶液为沉积液,以镀有ITO(铟锡氧化膜)的导电玻璃为衬底制备了CNx薄膜.初步探讨了沉积温度和沉积电压对薄膜中氮含量的影响.通过XPS、FTIR光谱、SEM和US-Vis光谱对得到的CNx薄膜的化学结合状态、结构形貌和光学性质进行了表征,并用高电阻仪对薄膜的绝缘性进行了分析.XPS结果表明,CNx薄膜中碳氮主要以单键连接,sp3杂化的C—N键占85%.在IR光谱中,仅出现了C—N键和CN双键的吸收峰.SEM图谱显示CNx薄膜呈颗粒状,粒径平均为80nm左右.在水浴加热条件下沉积的CNx薄膜在200~300nm近紫外区为非线性吸收.薄膜的电阻率随氮含量的增加而增大,测量值在1012~1016Ω·cm之间.  相似文献   

7.
Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi2−xSbxTe3) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi2−xSbxTe3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties.  相似文献   

8.
Nanocomposites of multi-walled carbon nanotube (MWCNT)/bis-phenol A type epoxy resin were prepared and physical properties of the nanocomposites were investigated. For the fine dispersion of MWCNT in the epoxy resin, MWCNT was modified with pyrene butyric acid (PBA) in the supercritical carbon dioxide (CO2). The physical adsorption of PBA on the surface of MWCNTs was studied with a thermogravimetric analyzer and a transmission electron microscopy. The electrical surface resistivities of the nanocomposites showed threshold decreases due to percolations above the critical concentration of the MWCNT. The resistivities showed maximum depending on the concentration and the modification of the surface of the MWCNT with PBA. It is postulated that the dispersion of the MWCNT in epoxy resins resulted in dispersion systems which exhibit rheological properties similar to lyotropic liquid crystalline polymers. The surface resistivities of the MWCNT/epoxy systems reflected the morphological characteristics of the systems which also determined rheological properties of the systems.  相似文献   

9.
In order to examine the “capto-dative” substitution-effect on the electrical conductivity, five compounds which have capto-dative substituents were prepared. Electron withdrawing (capto) group was nitro- or cyano-substituted phenyl and electron donating (dative) one was 5-methyl-5,10-dihydrophenazinyl moiety. The character of intramolecular electron donor acceptor complex of the five compounds were demonstrated by their uv spectra. Electron donor acceptor complexes of them with tetracyanoquinodimethane were prepared and their electrical resistivities were measured.  相似文献   

10.
A simple multi-contact measurement method, which can be used to map the electrical resistivity of small disc-shaped samples of conducting polymer during temperature ageing, was examined for its resolution and accuracy. The method is based on electrical impedance tomography (EIT), which is used especially in medicine to visualise boundaries between areas having different electrical resistivities. In order to eliminate experimental errors, a computer simulation was used for testing. The time series of resistivity maps were recorded during ageing of real polymer samples. The contour maps and their time development are presented graphically and discussed.  相似文献   

11.
The paper reports on the temperature dependence of the electrical and thermal conductivity, Hall constant, and Seebeck coefficient of Bi2−xInxSe3 (x=0, 0.2, 0.4) single crystals measured over the temperature range from 2 to 300 K. One single-valley conduction band model is used to interpret relations among transport coefficients. The data analysis relies on the use of a mixed carrier scattering mechanism consisting of acoustic scattering and scattering on ionized impurities. The effect of In incorporation into the Bi2Se3 crystal lattice on the individual components of thermal conductivity is evaluated and discussed.  相似文献   

12.
In order to understand nucleation; crystallization and other phase transitions in polymers, polymer based composites, or in liquid crystals simultaneous experiments with a combination of different methods are useful. Due to different sample geometry, contact faces with the sample holder, and thermal conditions it is usually difficult to compare the results of several individual experiments. As an important supplement to the classical techniques for studying crystallization like X-ray scattering, or differential scanning calorimetry, measurements which test molecular mobility like dielectric or mechanical spectroscopy are of interest during isothermal and non-isothermal crystallization. From such simultaneous experiments one can learn about the existence of pre-ordered structures before formation of crystals, as detected by DSC or X-ray scattering.In this contribution we present the development of a device for simultaneous measurements of electrical properties and X-ray scattering intensities, which was extended to a microcalorimeter and allows measuring thermal properties like heat capacity and thermal conductivity additionally at the same time and at the same sample volume.  相似文献   

13.
在紫外线的照射下,荧光素酯能与生物体细胞作用发出鲜艳的黄绿色荧光,由于生物体细胞的生活力不同,细胞内水解酶的含量也不同,因而显出的荧光强度不同。借此性质可以测定细胞内荧光素水解酶的活性以及细胞的生活状态。由于它们是一类选择性好,灵敏度较高的生物荧光染色剂,所以深入研究四种荧光素酯的化学物理性质是有意义的。四种荧光素酯的分子结构可用下面通式表示。  相似文献   

14.
The electrical resistivity of ferromagnetic La1?XSrXCoO3 (0.5 ≦ X ≦ 0.9) was measured in the temperature range from 77 to 300 K. All cobaltites are good conductors and have a metallic coefficient. The magnetic transitions are independent of the electrical conductivity in this system. The logarithm of the specific electrical resistivities (log ?) at 80 and 290 K monotonically increase with mole fraction of X, and these increases are explained by the itinerant-electron model.  相似文献   

15.
Polypropylene(PP)/multi-walled carbon nanotube(MWCNT)/calcium carbonate(CaCO_3)composites are prepared by melt mixing using two types of CaCO_3 of different sizes.The electrical resistivities of the composites with the two types of CaCO_3 are all lower than those of the corresponding PP/MWCNT composites at various MWCNT loadings (1 wt%-5 wt%).The morphology of the composites is investigated by field emission scanning electron microscopy (FESEM).The crystallization behavior of PP in the composites is char...  相似文献   

16.
The calculations of electrical resistivity of Sn–Pb liquid metallic alloys/solutions are investigated by self-consistent approach. We employ modified empty-core pseudopotential to represent electron–ion interaction, while partial structure factors are calculated using Aschroft–Langreth scheme with hard sphere reference system. The potential parameters for elemental metals were optimised to structural data in our previous paper. Computed results for resistivity as a function of temperature and concentration are discussed with other such results. Overall good agreement confirms the applicability of the present model potential for computing the electrical properties, including thermal conductivity and thermoelectric power for liquid metallic alloys.  相似文献   

17.
合成了NdnSrFenO3n+1(n=1,2 ,3,∞ ) 系列复合氧化物 ,其中Nd3SrFe3O10 是首次合成 ,并研究了其晶体结构 ,IR谱以及 30 0~ 110 0K之间的电性质和磁性质。相对于NdSrFeO4 ,Nd2 SrFe2 O7中ab平面上的Fe O键较短而c轴方向的Fe O键较长 ;而NdFeO3中只有一种Fe O键 ,在 30 0~110 0K之间 ,NdSrFeO4 ,显反铁磁性行为 ,Nd2 SrFe2 O7表现为亚铁磁性 ,而Nd3SrFe3O10 和NdFeO3为顺磁性。随着n值的增大 ,该系列氧化物电阻率增大 ,这可能是系统四价Fe离子浓度减小的结果。  相似文献   

18.
Thin copper films have been grown in a vertical MOCVD (Metal-Organic Chemical Vapor Deposition) reactor using bis(2,2,6,6-tetramethyl-3,5-heptanedionato) copper(II), Cu(thd)2, as precursor. Deposition has been carried out in a pure hydrogen atmosphere (pressure: 3, 20 mbar) at different substrate temperatures (350–750 ° C). The films have been investigated by profilometry, four-point resistivity measurements, ESCA, AES, XRD, AFM, and Normarsky microscopy. An unusual dependence of the film thickness with deposition time has been observed. Rapid growth occurred in the first minutes resulting in badly conducting films (thickness below 1000 Å). Good electrical resistivities have been obtained above 2000 Å. AFM has been used to gain information about the surface morphology of the films with different thicknesses. The grain size and surface roughness increased with increasing film thickness. Small grains grew in the beginning and the electrical properties have been governed by the highly Ohmic bridges between the individual grains.  相似文献   

19.
The inclusion of small concentrations of nanoparticles can significantly enhance the thermal and electrical properties, and to a lesser degree the mechanical performance, of polymers. Dispersion of nanoparticles during mixing is problematic, with poor mixing resulting in particle agglomeration (i.e. particle clustering), which subsequently limits the potential for property enhancement. Achieving good dispersion is considered key to large-scale production and commercialization of polymer nanocomposites (PNCs), and a measurement technique capable of quantitatively characterizing particle loading and dispersion would significantly enhance product development. This paper presents the results of a study using a static light scattering technique, Fourier domain optical coherence tomography (FD-OCT), for discriminating between different particle loadings and levels of dispersion. The technique has been applied to a range of PNCs including epoxy resins reinforced with nanoclay platelets, silica microspheres or multi-walled carbon nanotubes (MWCNTs), and zinc oxide and lithium aluminate reinforced polypropylene.  相似文献   

20.
Large reductions in the thermal conductivity of thermoelectrics using nanostructures have been widely demonstrated. Some enhancements in the thermopower through nanostructuring have also been reported. However, these improvements are generally offset by large drops in the electrical conductivity due to a drastic reduction in the mobility. Here, we show that large enhancements in the thermopower and electrical conductivity of half-Heusler (HH) phases can be achieved simultaneously at high temperatures through coherent insertion of nanometer scale full-Heusler (FH) inclusions within the matrix. The enhancements in the thermopower of the HH/FH nanocomposites arise from drastic reductions in the "effective" carrier concentration around 300 K. Surprisingly, the mobility increases drastically, which compensates for the decrease in the carrier concentration and minimizes the drop in the electrical conductivity. Interestingly, the carrier concentration in HH/FH nanocomposites increases rapidly with temperature, matching that of the HH matrix at high temperatures, whereas the temperature dependence of the mobility significantly deviates from the typical T(-α) law and slowly decreases (linearly) with rising temperature. This remarkable interplay between the temperature dependence of the carrier concentration and mobility in the nanocomposites results in large increases in the power factor at 775 K. In addition, the embedded FH nanostructures also induce moderate reductions in the thermal conductivity leading to drastic increases in the ZT of HH(1 - x)/FH(x) nanocomposites at 775 K. By combining transmission electron microscopy and charge transport data, we propose a possible charge carrier scattering mechanism at the HH/FH interfaces leading to the observed anomalous electronic transport in the synthesized HH(1 - x)/FH(x) nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号