首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the equation of state of the strong interaction matter in a background magnetic field via the two flavor Nambu-Jona-Lasinio model. Starting from the mean-field thermodynamical potential density Ω, we calculate the pressure density p, the entropy density s, the energy density ε, and the interaction measure (ε-3p)=T4 of the strong interaction matter at finite temperature and finite magnetic field. The results manifest that the chiral phase transition is just a crossover but not a low order phase transition. Moreover there may exist magnetic catalysis effect, and its mechanism is just the effective dimension reduction induced by the magnetic field.  相似文献   

2.
The chiral magnetic wave is a gapless collective excitation of quark-gluon plasma in the presence of an external magnetic field that stems from the interplay of chiral magnetic and chiral separation effects; it is composed of the waves of the electric and chiral charge densities coupled by the axial anomaly. We consider a chiral magnetic wave at finite baryon density and find that it induces the electric quadrupole moment of the quark-gluon plasma produced in heavy ion collisions: the "poles" of the produced fireball (pointing outside of the reaction plane) acquire additional positive electric charge, and the "equator" acquires additional negative charge. We point out that this electric quadrupole deformation lifts the degeneracy between the elliptic flows of positive and negative pions leading to v(2)(π(+))相似文献   

3.
We perform a first lattice QCD simulation including a two-flavor dynamical fermion with a chiral chemical potential. Because the chiral chemical potential gives rise to no sign problem, we can exactly analyze a chirally imbalanced QCD matter by Monte Carlo simulation. By applying an external magnetic field to this system, we obtain a finite induced current along the magnetic field, which corresponds to the chiral magnetic effect. The obtained induced current is proportional to the magnetic field and to the chiral chemical potential, which is consistent with an analytical prediction.  相似文献   

4.
Hong Wei Yang  Yan Liu 《Optik》2012,123(4):371-375
In this paper, a model for calculating the reflection and absorption powers of electromagnetic wave (EM wave) in nonuniform magnetized plasma slab is given out based on layer propagation theory. The effects of various plasma parameters and different values of magnetic field intensity on the reflected and absorbed powers are discussed. The results illustrate that the thickness of plasma seldom affects the reflection of radar wave, but it can broaden or reduce the absorption width. Meanwhile, the background magnetic field intensity has an influence upon the results, and it could change the resonance spectrum of magnetized plasma. We also find out that, with appropriate plasma density, collision frequency and magnetic field intensity, more than 90% of radar wave power can be absorbed and the resonant absorption band is about 2 GHz.  相似文献   

5.
This article presents the results of theoretical study of the axial structure of gas discharge that is sustained by a non‐symmetric electromagnetic surface wave (SW) with azimuth wavenumber m = –2. The phase and attenuation characteristics of the wave, and the spatial wave field structure were studied as well. The wave considered propagates along the magnetized slightly nonuniform in axial direction plasma column and sustains it. The influence of external magnetic field value and finite plasma column radius on the discharge stability, on the plasma density axial profile and on the SW properties has been studied in the case of the diffusion regime of gas discharge sustaining.  相似文献   

6.
We introduce a new non-Hermitian random-matrix model for QCD with a baryon chemical potential. This model is a direct chiral extension of a previously studied model that interpolates between the Wigner-Dyson and Ginibre ensembles. We present exact results for all eigenvalue correlations for any number of quark flavors using the orthogonal polynomial method. We also find that the parameters of the model can be scaled to remove the effects of the chemical potential from all thermodynamic quantities until the finite density phase transition is reached. This makes the model and its extensions well suited for studying the phase diagram of QCD.  相似文献   

7.
建立了电磁波穿过磁化等离子体鞘套的一维模型,并采用数值分析方法对太赫兹(THz)电磁波在磁化等离子体鞘套中传播时的反射率、透射率和衰减值进行了计算仿真,分析了磁化条件下磁场强度、太赫兹波频率、等离子体鞘套厚度、等离子体碰撞频率和等离子体密度对太赫兹波在磁化等离子体鞘套中传播特性的影响。仿真结果表明:排除衰减波峰对应的频率范围,外加磁场有效降低了太赫兹波传输的衰减,在固定磁场强度下,衰减波峰两侧的衰减值均达到了5 dB以下,有效地解决了通信黑障问题。  相似文献   

8.
建立了电磁波穿过磁化等离子体鞘套的一维模型,并采用数值分析方法对太赫兹(THz)电磁波在磁化等离子体鞘套中传播时的反射率、透射率和衰减值进行了计算仿真,分析了磁化条件下磁场强度、太赫兹波频率、等离子体鞘套厚度、等离子体碰撞频率和等离子体密度对太赫兹波在磁化等离子体鞘套中传播特性的影响。仿真结果表明:排除衰减波峰对应的频率范围,外加磁场有效降低了太赫兹波传输的衰减,在固定磁场强度下,衰减波峰两侧的衰减值均达到了5 dB以下,有效地解决了通信黑障问题。  相似文献   

9.
The effect of a magnetized transient plasma on a circularly polarized source wave, when the rise time of the electron density profile is comparable to the source wave period, is considered. The H-formulation Green's function is developed to study the effect of a finite rise time on the generation of a wiggler magnetic field.  相似文献   

10.
We investigate the chiral phase transition at finite temperatures and zero chemical potential with Dyson-Schwinger equations. Our truncation for the quark-gluon interaction includes mesonic degrees of freedom, which allows us to study the impact of the pions on the nature of the phase transition. Within the present scheme we find a 5% change of the critical temperature due to the pion backreaction whereas the mean field character of the transition is not changed.  相似文献   

11.
Using the linear sigma model, we have introduced the pion isospin chemical potential. The chiral phase transition is studied at finite temperatures and finite isospin densities. We have studied the μ-T phase diagram for the chiral phase transition and found the transition cannot happen below a certain low temperature because of the Bose-Einstein condensation in this system. Above that temperature, the chiral phase transition is studied by the isotherms of pressure versus density. We indicate that the transition, in the chiral limit, is a first-order transition from a low-density phase to a high-density phase like a gas-liquid phase transition.  相似文献   

12.
The chiral phase transition in QCD at finite chemical potential and temperature can be characterized for small chemical potential by its curvature and the transition temperature. The curvature is accessible to QCD lattice simulations, which are always performed at finite pion masses and in finite simulation volumes. We investigate the effect of a finite volume on the curvature of the chiral phase transition line. We use functional renormalization group methods with a two flavor quark-meson model to obtain the effective action in a finite volume, including both quark and meson fluctuation effects. Depending on the chosen boundary conditions and the pion mass, we find pronounced finite-volume effects. For periodic quark boundary conditions in spatial directions, we observe a decrease in the curvature in intermediate volume sizes, which we interpret in terms of finite-volume quark effects. Our results have implications for the phase structure of QCD in a finite volume, where the location of a possible critical endpoint might be shifted compared to the infinite-volume case.  相似文献   

13.
We develop a nonlinear two-dimensional fluid model of whistler turbulence that includes effect of electron fluid density perturbations. The latter is coupled nonlinearly with wave magnetic field. This coupling leads essentially to finite compressibility effects in whistler turbulence model. We find from our simulations that despite strong compressibility effects, the density fluctuations follow the evolution of the wave magnetic field fluctuations. In a characteristic regime where large scale whistlers are predominant, the coupled density fluctuations are found to follow a Kolmogorov-like phenomenology in the inertial range turbulence. Consequently, the turbulent energy is dominated by the large scale (compared to electron inertial length) eddies and it follows a Kolmogorov-like k−7/3 spectrum, where k is a characteristic wavenumber.  相似文献   

14.
We construct three families of general magnetostatic axisymmetric exact solutions of Einstein-Maxwell equations in spherical coordinates, prolate, and oblates. The solutions obtained are then presented in the system of generalized spheroidal coordinates which is a generalization of the previous systems. The method used to build such solutions is the well-known complex potential formalism proposed by Ernst, using as seed solutions vacuum solutions of the Einstein field equations. We show explicitly some particular solutions among them a magnetized Erez-Rosen solution and a magnetized Morgan-Morgan solution, which we interpret as the exterior gravitational field of a finite dislike source immersed in a magnetic field. From them we also construct using the well known “displace, cut and reflect” method exact solutions representing relativistic thin disks of infinite extension. We then analyze the motion of electrically charged test particles around these fields for equatorial circular orbits and we discuss their stability against radial perturbations. For magnetized Morgan-Morgan fields we find that inside of disk the presence of magnetic field provides the possibility of to find relativist charged particles moving in both prograde and retrograde direction.  相似文献   

15.
We study the pi phase in a superconductor-ferromagnet-superconductor Josephson junction, with a ferromagnet showing a cycloidal spiral spin modulation with in-plane propagation vector. Our results reveal a high sensitivity of the junction to the spiral order and indicate the presence of 0-pi quantum phase transitions as function of the spiral wave vector. We find that the chiral magnetic order introduces chiral superconducting triplet pairs that strongly influence the physics in such Josephson junctions, with potential applications in nanoelectronics and spintronics.  相似文献   

16.
We study the properties of mixed quark–gluon condensate at finite temperature and chemical potential in the framework of global color symmetry model. In comparing with the quark condensate, we confirm that both of these condensates give the same information about chiral phase transition. We also find that the ratio of these two condensates is insensitive to the temperature T and the chemical potential μ, which supports the conclusion obtained recently by the authors using quenched lattice QCD.  相似文献   

17.
《Nuclear Physics B》2002,620(1-2):290-314
We study QCD with two colors and quarks in the fundamental representation at finite baryon density in the limit of light-quark masses. In this limit the free energy of this theory reduces to the free energy of a chiral Lagrangian which is based on the symmetries of the microscopic theory. In earlier work this Lagrangian was analyzed at the mean-field level and a phase transition to a phase of condensed diquarks was found at a chemical potential of half the diquark mass (which is equal to the pion mass). In this article we analyze this theory at next-to-leading order in chiral perturbation theory. We show that the theory is renormalizable and calculate the next-to-leading order free energy in both phases of the theory. By deriving a Landau–Ginzburg theory for the order parameter we show that the finite one-loop contribution and the next-to-leading order terms in the chiral Lagrangian do not qualitatively change the phase transition. In particular, the critical chemical potential is equal to half the next-to-leading order pion mass, and the phase transition is of second order.  相似文献   

18.
袁学松  鄢扬  刘盛纲 《物理学报》2011,60(1):14102-014102
采用等效媒质处理方法来研究有限引导磁场下沿纵向运动的相对论环形电子注.首先建立运动坐标系以电子注纵向速度匀速运动,在运动坐标系中电子注可以被考虑成静止的磁化等离子体,再通过四维空间的洛伦兹变换得到电子注在静止的实验室坐标系下可以被等效为双各向异性媒质,其不仅具有张量形式的电导率和磁导率,还具有手征特性.在此基础上同时考虑了由于电子注表面波动所引起的表面电流密度.采用该方法研究了有限引导磁场下圆柱波导中沿纵向运动的相对论环形电子注,推导出该模型的色散方程,并进行了数值计算.计算结果表明该研究方法能够得到更准 关键词: 相对论环形电子注 磁化等离子体 色散特性  相似文献   

19.
We derive some rigorous results on the chiral phase transition in QCD and QCD-like theories with a large number of colors, N(c), based on the QCD inequalities and the large-N(c) orbifold equivalence. We show that critical phenomena and associated soft modes are forbidden in flavor-symmetric QCD at finite temperature T and finite but not so large quark chemical potential μ for any nonzero quark mass. In particular, the critical point in QCD at a finite baryon chemical potential μ(B)=N(c)μ is ruled out, if the coordinate (T, μ) is outside the pion condensed phase in the corresponding phase diagram of QCD at a finite isospin chemical potential μ(I)=2μ.  相似文献   

20.
采用空间透射波测量方法,实验研究透波密闭石英玻璃容器内等离子体喷流对垂直和水平极化电磁波的衰减,在有和无外加磁场条件下分析实验参数对等离子吸波效应的影响,分析等离子体的吸波机理.实验结果表明在非磁和本实验条件下,平面电磁波在等离子体中的衰减机理为碰撞吸收;在有磁和本实验条件下,平面电磁波在磁等离子体中的衰减机理同样为碰撞吸收,但是外加磁场的存在有限地改善了等离子体的吸波效应.为了使磁等离子体最有效地吸收电磁波,应该提高磁场感应强度,把高频混杂频率提高到测试微波频率范围内,或降低微波测试频率至本实验中的高混 关键词: 等离子体相互作用 电磁波 电磁波在等离子体中的传输  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号