首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vapor–liquid equilibria (VLE) data of 2-butanol?+?benzene or toluene or o- or m- or p-xylene measured by static method at 308.15?±?0.01?K over the entire composition range are reported. The excess molar Gibbs free energies of mixing (G E) for these binary systems have been calculated from total vapor pressure data using Barker's method. The G E for these binary systems are also analyzed in terms of the Mecke–Kempter type of association model with a Flory contribution term using two interaction parameters and it has been found that this model describes well the G E values of binary systems benzene or toluene.  相似文献   

2.
Excess molar volumes dependence with temperature for the mixtures butyl acetate?+?aromatic hydrocarbons (toluene, ethylbenzene, p-xylene, mesitylene, isopropylbenzene, butylbenzene, isobutylbenzene, and t-butylbenzene) were determined from density measurements by a vibrating-tube densimeter. The excess molar volumes are positive or slightly negative in the studied mixtures over the whole composition range, attending to the solvent molecular weight, only the isobutylbenzene showing a sigmoid trend. Steric hindrance in these mixtures was analyzed in the light of partial excess molar volumes behavior. The experimental data were used to test semiempirical procedures of density prediction, and compute the binary interaction parameters of the Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR) equations of state, which are of general interest in multicomponent thermodynamic functions estimation. The obtained results point out the interest of the equations of state to study complex mixtures and as a tool for predicting other magnitudes of general application for theoretical studies or processes calculations.  相似文献   

3.
4.
The (liquid + liquid) equilibrium data (LLE) for the extraction of toluene from heptane with different ionic liquids (ILs) based on the alkylsulfate anion (R-SO4) was determined at T = 313.2 K and atmospheric pressure. The effect of more complex R-SO4 anions on capacity of extraction and selectivity in the liquid–liquid extraction of toluene from heptane was studied. The ternary systems were formed by {heptane + toluene + 1,3-dimethylimidazolium methylsulfate ([mmim][CH3SO4]), 1-ethyl-3-methylimidazolium hydrogensulfate ([emim][HSO4]), 1-ethyl-3-methylimidazolium methylsulfate ([emim][CH3SO4]), or 1-ethyl-3-methylimidazolium ethylsulfate ([emim][C2H5SO4])}. The degree of quality of the experimental LLE data was ascertained by applying the Othmer–Tobias correlation. The phase diagrams for the ternary systems were plotted, and the tie lines correlated with the NRTL model compare satisfactorily with the experimental data.  相似文献   

5.
《Fluid Phase Equilibria》1999,163(1):79-98
Phase equilibria in binary and ternary polyolefin systems are calculated using the cubic equation of state proposed by Sako–Wu–Prausnitz (SWP). Calculations were done for high-pressure phase equilibria in ethylene/polyethylene (LDPE) systems and for liquid–liquid equilibria (LLE) in systems containing either high-density polyethylene or poly(ethylene-co-propylene). The calculations for the copolymer/solvent systems are compared with those using the SAFT EOS. The two equations of state can describe UCST, LCST as well as U-LCST behaviour with similar accuracy. Whereas, the binary interaction parameter is temperature-independent for SAFT, it is found to be a function of temperature for the SWP model. Moreover, the influence of an inert gas on the LCST of the polyethylene/hexane system is investigated using the SWP EOS. The polydispersity of the different polyethylenes is considered in the phase equilibrium calculations using pseudocomponents chosen by the moments of the experimental molecular weight distributions.  相似文献   

6.
《Fluid Phase Equilibria》1999,157(2):299-307
Isobaric vapor–liquid equilibrium data have been determined at 101.33 kPa for the binary mixtures of benzene-tetraethylene glycol (TeEG), toluene-TeEG and o-xylene-TeEG. The vapor-phase fugacity coefficients were calculated from the virial equation. The thermodynamic consistency of the data has been tested via Herington analysis. The binary parameters for four activity coefficient models (van Laar, Wilson, NRTL and UNIQUAC) have been fitted with the experimental data. A comparison of model performances has been made by using the criterion of root mean square deviations in boiling point and vapor-phase composition.  相似文献   

7.
《Fluid Phase Equilibria》1998,152(2):255-263
Isothermal vapor–liquid equilibria (VLE) for mixtures containing 1,1,1-trichloroethane+tetrahydrofuran+propan-2-ol have been measured using a modified version of a Boublik–Benson still at 298.15 K. A test of thermodynamic consistency, like McDermott–Ellis method was applied to the activity coefficients. Excess molar Gibbs free energies were calculated over the entire range composition. Different expressions existing in the literature were used to predict the activity coefficients.  相似文献   

8.
Binodal curves of the aqueous 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4) + sodium citrate (Na3C6H5O7), [Bmim]BF4 + sodium tartrate (Na2C4H4O6) and [Bmim]BF4 + sodium acetate (NaC2H3O2) systems have been determined experimentally at 298.15 K. The Merchuk equation was used to correlate the binodal data. The effective excluded volume (EEV) values obtained from the binodal model for these three systems were determined. The binodal curves and EEV both indicate that the salting-out abilities of the three salts follow the order: Na3C6H5O7 > Na2C4H4O6 > NaC2H3O2. The liquid–liquid equilibrium (LLE) data were obtained by density determination and binodal curves correlation of these systems. Othmer–Tobias and Bancraft, and Setschenow equations were used for the correlation of the tie-line data. Good agreement was obtained with the experimental tie-line data with both models.  相似文献   

9.
Fine and ultrafine particles are probably responsible for numerous health effects, but it is still unclear whether and to what extent the particle itself or organic compounds adsorbed or condensed on the particle are responsible for the effects observed. One important class of particle-bound substances are the polycyclic aromatic hydrocarbons (PAH) and their oxygenated derivatives. To improve the tools used for chemical characterization of particulate matter analytical methods for the determination of PAH and oxygenated PAH in aerosol samples of different origin have been developed and optimized. PAH on high-volume filters and on soot aerosols were analyzed by using accelerated solvent extraction for extraction and high-performance liquid chromatography with fluorescence detection for separation and quantification. Total PAH concentrations were in the range 0.3–9.3 ng m–3. For analysis of selected oxygenated PAH on high-volume filters a liquid chromatography–tandem mass spectrometric method was developed and optimized. Preliminary investigations showed that oxygenated PAH at pg m–3 concentrations can be determined.  相似文献   

10.
11.
《Fluid Phase Equilibria》2002,201(1):187-201
Isobaric vapour–liquid equilibria have been experimentally determined for the binary systems methanol+dimethyl carbonate, ethanol+dimethyl carbonate, dimethyl carbonate+1-propanol, dimethyl carbonate+1-butanol and dimethyl carbonate+1-pentanol at 101.3 kPa. The activity coefficients were calculated to be thermodynamically consistent and were correlated with the Wilson and UNIQUAC equations. Interaction parameters related to the carbonate group (OCOO) and alcohols, in ASOG and UNIFAC methods, have been determined using our experimental VLE data. The experimental results, as well as those by other authors, agree with the calculated VLE using the new ASOG and UNIFAC parameters.  相似文献   

12.
Influence of inorganic salts on the system of liquid phase equilibrium of water + furfuryl alcohol + cyclopentanone at 298.2 K was studied. Different salt concentrations (0, 1 and 2 wt%) and the type of salt (LiCl, NaCl, KCl, and RbCl) were investigated. The results showed that the two-phase region of the ternary system enlarged by addition of salt. NRTL model was applied, and good correlation between the experimental data and the model was achieved as confirmed by the low rmsd values.  相似文献   

13.
A simple, rapid and efficient method, ionic liquid based dispersive liquid–liquid microextraction (IL-DLLME), has been developed for the first time for the determination of 18 polycyclic aromatic hydrocarbons (PAHs) in water samples. The chemical affinity between the ionic liquid (1-octyl-3-methylimidazolium hexafluorophosphate) and the analytes permits the extraction of the PAHs from the sample matrix also allowing their preconcentration. Thus, this technique combines extraction and concentration of the analytes into one step and avoids using toxic chlorinated solvents. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, type and volume of disperser solvent, extraction time, dispersion stage, centrifuging time and ionic strength, were optimised. Analysis of extracts was performed by high performance liquid chromatography (HPLC) coupled with fluorescence detection (Flu). The optimised method exhibited a good precision level with relative standard deviation values between 1.2% and 5.7%. Quantification limits obtained for all of these considered compounds (between 0.1 and 7 ng L−1) were well below the limits recommended in the EU. The extraction yields for the different compounds obtained by IL-DLLME, ranged from 90.3% to 103.8%. Furthermore, high enrichment factors (301–346) were also achieved. The extraction efficiency of the optimised method is compared with that achieved by liquid–liquid extraction. Finally, the proposed method was successfully applied to the analysis of PAHs in real water samples (tap, bottled, fountain, well, river, rainwater, treated and raw wastewater).  相似文献   

14.
A low toxic dispersive liquid–liquid microextraction (LT-DLLME) combined with gas chromatography–mass spectrometry (GC–MS) had been developed for the extraction and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in water samples. In normal DLLME assay, chlorosolvent had been widely used as extraction solvents; however, these solvents are environmental-unfriendly. In order to solve this problem, we proposed to use low toxic bromosolvent (1-bromo-3-methylbutane, LD50 6150 mg/kg) as the extraction solvent. In this study we compared the extraction efficiency of five chlorosolvents and thirteen bromo/iodo solvents. The results indicated that some of the bromo/iodo solvents showed better extraction and had much lower toxicity than chlorosolvents. We also found that propionic acid is used as the disperser solvent, as little as 50 μL is effective. Under optimum conditions, the range of enrichment factors and extraction recoveries of tap water samples are ranging 372–1308 and 87–105%, respectively. The linear range is wide (0.01–10.00 μg L−1), and the limits of detection are between 0.0003 and 0.0078 μg L−1 for most of the analytes. The relative standard deviations (RSD) for 0.01 μg L−1 of PAHs in tap water were in the range of 5.1–10.0%. The performance of the method was gauged by analyzing samples of tap water, sea water and lake water samples.  相似文献   

15.
A sample preparation method for the determination of hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) in sediment samples was developed using gas chromatography–mass spectrometry (GC–MS). Dispersive liquid–liquid microextraction (DLLME) with derivatization was performed following the subcritical water extraction (SWE) that provided which was provided by accelerated solvent extraction (ASE). Several important parameters that affected both SWE extraction and DLLME, such as the selection of organic modifier, its volume, extraction temperature, extraction pressure and extraction time were also investigated. High sensitivity of the hydroxylated PAHs derivatives by N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) could be achieved with the limits of detection (LODs) ranging from 0.0139 (2-OH-nap) to 0.2334 μg kg−1 (3-OH-fluo) and the relative standard deviations (RSDs) between 2.81% (2-OH-phe) and 11.07% (1-OH-pyr). Moreover, the proposed method was compared with SWE coupled with solid phase extraction (SPE), and the results showed that ASE–DLLME was more promising with recoveries ranging from 57.63% to 91.07%. The proposed method was then applied to determine the hydroxylated metabolites of phenanthrene in contaminated sediments produced during the degradation by two PAH-degraders isolated from mangrove sediments.  相似文献   

16.
Total vapour pressure measurements made by the modified static method for the ternary system carbon tetrachloride—methanol—chloroform and constituent binaries at 293.15 K are presented. The different expressions for GE suitable for correlation of these data are tested. The prediction of ternary VLE from constituent binaries is studied. Our results are compared to literature data.  相似文献   

17.
《Thermochimica Acta》1986,109(1):55-61
The Swietoslawski's differential ebulliometer has been minimized to be usable for ca. 13 cm3 of liquid. After a performance test with acetone, the vapour pressure of hexamethyldisilane is determined over the temperature range 304.61–386.74 K. The Antoine equation obtained is log10(P/kPa) = 5.97097 − 1319.85/{(T/K) − 52.96} and the normal boiling point is 385.81 K. The present results agree with literature values of Suga and Seki at 287–310 K and Brockway and Davidson at 293–334 K.  相似文献   

18.
《Fluid Phase Equilibria》2004,215(2):227-236
In the present work, a group contribution method is proposed for the estimation of the vapor pressure of fatty compounds. For the major components involved in the vegetable oil industry, such as fatty acids, esters and alcohols, triacylglycerols (TAGs) and partial acylglycerols, the optimized parameters are reported. The method is shown to be accurate when it is used together with the UNIFAC model for estimating vapor–liquid equilibria (VLE) of binary and multicomponent fatty mixtures comprised in industrial processes such as stripping of hexane, deodorization and physical refining. The results achieved show that the group contribution approach is a valuable tool for the design of distillation and stripping units since it permits to take into account all the complexity of the mixtures involved. This is particularly important for the evaluation of the loss of distillative neutral oil that occurs during the processing of edible oils.The combination of the vapor pressure model suggested in the present work with the UNIFAC equation gives results similar to those already reported in the literature for fatty acid mixtures and oil–hexane mixtures. However, it is a better tool for predicting vapor–liquid equilibria of a large range of fatty systems, also involving unsaturated compounds, fatty esters and acylglycerols, not contemplated by other methodologies. The approach suggested in this work generates more realistic results concerning vapor–liquid equilibria of systems encountered in the edible oil industry.  相似文献   

19.
《Fluid Phase Equilibria》2004,224(2):185-192
Liquid–liquid equilibrium (LLE) data for butyl tert-butyl ether + (methanol or ethanol) + water were measured experimentally at 298.15, 308.15 and 318.15 K. The experimental data were correlated with the NRTL and UNIQUAC equations. The equations were used to perform the correlation of each temperature data set and for the three temperatures data set simultaneously. The best results were found with UNIQUAC and NRTL (α = 0.1), respectively. Data prediction was carried out using the UNIFAC method, however the results found were not quantitative.  相似文献   

20.
An efficient method for fast elucidation of the electrochemical reactions of polycyclic aromatic hydrocarbons (PAH) has been set up by applying post-column electrochemistry in liquid chromatography–mass spectrometry (LC–MS). With this set-up strong improvement of sensitivity in the LC–MS analysis of PAH is observed. Due to their low redox potentials, the non-polar PAH are converted into the respective radical cations, which may further react with constituents of the mobile phase and in additional electrochemical oxidation steps. Among other products, mono-, di-, and trioxygenated species are observed in aqueous solutions, alkoxylated compounds in alcohols, and solvent adducts in the presence of acetonitrile. While more different products are observed by using atmospheric pressure chemical ionization in the positive-ion mode (APCI(+)), the deprotonation of hydroxylated species results in very clear spectra in the negative-ion mode (APCI(–)). Deuterated PAH and deuterated solvents were used to gain additional information on the formation of the reaction products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号